
No. 18-956

IN THE

Supreme Court of the United States

GOOGLE LLC,

Petitioner,

v.

ORACLE AMERICA, INC.,

Respondent.

On Writ of Certiorari

to the United States Court of Appeals

for the Federal Circuit

BRIEF AMICI CURIAE

OF XX COMPUTER SCIENTISTS

IN SUPPORT OF PETITIONER

 Phillip R. Malone

Counsel of Record

JUELSGAARD INTELLECTUAL

PROPERTY AND

INNOVATION CLINIC

MILLS LEGAL CLINIC AT

STANFORD LAW SCHOOL

559 Nathan Abbott Way

Stanford, CA 94305

(650) 725-6369

pmalone@stanford.edu

Counsel for Amici Curiae

mailto:pmalone@stanford.edu

1

 TABLE OF CONTENTS

INTEREST OF AMICI CURIAE 3

SUMMARY OF ARGUMENT 5

ARGUMENT .. 6

I. The Decisions Below Reflect the Federal

Circuit’s Fundamental Misunderstanding of

How Interfaces Differ from Programs 6

A. Software Interfaces Specify What a

Program Does, Not How It Does So 8

B. Google Wrote Its Own Implementation of

the Java API to Promote Interoperability

and Transform Java to Run on

Smartphones .. 15

II. The Decisions Below Upend Decades of

Settled Expectations and Threaten

Future Innovation in Software 19

A. The Computer Industry Has Long

Relied on Freely Reimplementing

Software Interfaces to Foster

Innovation and Competition 20

B. Allowing Copyright to Restrict the

Reimplementation of Software Interfaces

Will Stifle Competition by Increasing

Barriers to Entry for Startups and Others . 25

C. Restricting the Reimplementation of

Software Interfaces Will Exacerbate Lock-

In Effects and Create an “Orphan

Software” Problem .. 28

CONCLUSION .. 29

APPENDIX A — LIST OF AMICI CURIAE 1

2

 TABLE OF AUTHORITIES

3

 INTEREST OF AMICI CURIAE

Amici are 78 computer scientists, engineers, and

professors who are pioneering and influential figures

in the computer industry.1 Amici include the

architects of iconic computers from the mainframe era

to the microcomputer era, including the IBM S/360

and the Apple II; languages such as AppleScript,

AWK, C, C#, C++, Delphi, Go, Haskell, PL/I, Python,

RenderMan, Scala, Scheme, Standard ML, Smalltalk,

and TypeScript; and operating systems such as MS-

DOS and Unix.2 Amici are responsible for key

advances in the field, including in computer graphics,

1 Petitioner granted blanket consent for the filing of this brief;

Respondent declined to consent. No counsel for a party authored

this brief in whole or in part, and no party or counsel for a party

made a monetary contribution intended to fund its preparation

or submission. No person, other than amici or their counsel, made

a monetary contribution to the preparation or submission of this

brief.

2 Amici’s biographies are attached as Appendix A. Amici sign this

brief on their own behalf and not on behalf of the companies or

organizations with which they are affiliated; those affiliations are

for identification purposes only. Amici represent a cross section

of the world’s most distinguished computer scientists and

engineers. As such, the 78 amici include five who are presently

Google employees (indicated by * next to their names); two who

receive some support from Google (indicated by **); two who

testified as unpaid fact witnesses at trial in this case (indicated

by †); and one who was retained as an expert by Google but did

not testify (indicated by ‡). Each of these amici signs this brief

based on their personal experience and beliefs as individual

computer scientists whose work in the field long preceded their

affiliation with Google or their participation in this case. None

sign on behalf of Google or at Google’s request.

4

 computer animation, computer system architecture,

cloud computing, algorithms, public key cryptography,

the theory of computation, object-oriented

programming, relational databases, design patterns,

virtual reality, the spreadsheet, and the Internet.

Amici wrote the standard college textbooks in areas

including artificial intelligence, algorithms, computer

architecture, computer graphics, computer security,

data structures, functional programming, Java

programming, operating systems, software

engineering, and the theory of programming

languages.

Amici have been widely recognized for their

achievements. They include at least 12 Association for

Computing Machinery (ACM) Turing Award winners

(computer science’s most prestigious award); 24 ACM

Fellows; 11 Institute of Electrical and Electronics

Engineers (IEEE) Fellows; 14 American Academy of

Arts and Sciences Fellows; 6 National Academy of

Sciences Members; 24 National Academy of

Engineering Members; 5 National Medal of

Technology recipients; and numerous professors at

many of the world’s leading universities.

As computer scientists, amici have relied on

reimplementing interfaces to create fundamental

software. They join this brief because they believe,

based on their extensive experience with and

knowledge of computer software and programming,

that the decisions below threaten to upend decades of

settled expectations across the computer industry and

chill continued innovation in the field.

5

 SUMMARY OF ARGUMENT

The decisions of the Federal Circuit below are

wrong and threaten significant disruption if allowed to

stand. They undermine a fundamental process—

software interface reimplementation—that has

spurred historic innovation across the software

industry for decades.

Software interfaces, including those embodied in

the Java Application Programming Interface (API) at

issue here, are purely functional systems or methods

of operating a computer program or platform. They are

not computer programs themselves. Interfaces merely

describe what functional tasks a computer program

will perform without specifying how it does so. The

Java API’s functional interfaces, called declarations,

are written using the Java programming language,

which mandates each declaration’s precise form.

In contrast, implementations provide the actual

step-by-step instructions to perform each task

included in an interface. Sun implemented the Java

API for desktop computers. Google reimplemented—

or wrote its own original implementation of—the Java

API when it created the Android platform for

smartphones and tablets. Android was highly

transformative: It enabled programs written in the

Java programming language to successfully run on

smartphones and tablets for the first time. Doing so

required Google to make significant additions to the

Java API to handle mobile-specific features, like

touchscreen inputs.

Android also provided interoperability with Java:

Programmers could use their preexisting knowledge to

simultaneously write Java programs for both desktops

6

 and smartphones. Reimplementing the Java API was

the only way to make Android interoperable with

Java. Reimplementation requires duplicating an

interface’s declarations and organizational scheme—

its structure, sequence, and organization (SSO). Had

Android changed the Java API’s declarations or SSO,

programmers would have been forced to write

different software for desktops and smartphones,

eliminating one of Android’s most significant benefits.

Google’s reimplementation of an existing interface

was not unusual. Reimplementing software interfaces

is a long-standing, ubiquitous practice that has been

essential to realizing fundamental advances in

computing. It unleashed the personal computer

revolution, created popular operating systems and

programming languages, and established the

foundation upon which the Internet and cloud

computing depend. It continues to increase consumer

choice, lower prices, and foster compatibility between

programs. Free reimplementation of software

interfaces has long been, and remains, essential for

innovation and competition in software.

The Court should reverse the decisions below to

preserve software interfaces as uncopyrightable and

prevent copyright from stifling innovation in software.

ARGUMENT

I. The Decisions Below Reflect the Federal

Circuit’s Fundamental Misunderstanding of

How Interfaces Differ from Programs

The decisions below extend copyright protection to

software interfaces—including the Java API—by

7

 erroneously equating them with computer programs.

Asserting that software interfaces are simply a type of

computer program, all of which are “by definition

functional,” the Federal Circuit misapplied general

Ninth Circuit law recognizing computer programs as

copyrightable. See Oracle Am., Inc. v. Google Inc.

(Copyright II), 750 F.3d 1339, 1367 (Fed. Cir. 2014).

But software interfaces are not computer programs,

and no party argues that “one can copy line-for-line

someone else’s copyrighted computer program.” Oracle

Am., Inc. v. Google Inc. (Copyright I), 872 F. Supp. 2d

974, 987 (N.D. Cal. 2012).

The Federal Circuit’s conclusory review fails to

appreciate the district court’s reasoned—and correct—

recognition of software interfaces as uncopyrightable

under 17 U.S.C. § 102(b) and the merger doctrine. See

Copyright I, 872 F. Supp. 2d at 998-1000. The Federal

Circuit compounded its error by overturning a jury

finding of fair use and holding that Google’s creation

of Android was not fair use as a matter of law. See

Oracle Am., Inc. v. Google LLC (Fair Use II), 886 F.3d

1179, 1185-86 (Fed. Cir. 2018).

Amici join Google’s arguments that software

interfaces cannot be copyrighted under either § 102(b)

or the merger doctrine, and that in any event, the jury

could reasonably have found that Google’s creation of

Android was fair use. Brief for Petitioner at 19, 34,

Google LLC v. Oracle Am., Inc., No. 18-956 (Jan. 6,

2020). In support of those arguments, amici emphasize

that software interfaces correspond to functional

ideas, that Google had to duplicate the Java API’s

declarations exactly to provide interoperability

between Android and Java, and that Android was a

8

 transformative achievement that successfully

introduced Java to smartphones for the first time.

A. Software Interfaces Specify What a

Program Does, Not How It Does So

A software interface specifies the set of commands

used to operate a computer program or system. Each

command defines one functional task a program must

accomplish, such as finding the maximum of two

numbers, sorting a list of numbers, or displaying text

on the screen.

Each command in an interface includes its name,

inputs, and outputs. Together, these comprise the

command’s “declaration.” The declaration for a

command to find the maximum of two numbers, for

example, would include the name “max,” two numbers

as inputs, and one number—the maximum—as

output. Declarations are purely functional: They

specify what a computer program or system needs to

do without specifying how it does so. By themselves,

declarations do not instruct a computer to do anything.

In contrast, an interface’s implementation is the

actual “set of statements or instructions to be used

directly or indirectly in a computer in order to bring

about a certain result,” namely, carrying out the tasks

specified by its declarations. 17 U.S.C. § 101 (defining

“computer program”). The same declaration can be

implemented in various ways to accomplish the same

task. Some implementations prioritize speed, others

memory use. So long as an implementation carries out

the specified task, it is valid. While the “specification

is the idea,” the “implementation is the expression.”

Copyright I, 872 F. Supp. 2d at 998 (emphasis in

original).

9

 Because real-world software interfaces can

include thousands of declarations, programmers group

related declarations into their own “folders,” just as

everyday computer users group related files into

folders on their desktop. The courts and parties have

referred to this organizational scheme throughout this

litigation as the interface’s structure, sequence, and

organization (SSO).

i. Declarations specify the individual

tasks a program must perform

To better understand the relationship between an

interface’s declarations, implementations, and SSO,

consider the sort declaration in the Java API.3 In

English, this declaration would read, “Given a list of

numbers, sort them in ascending order.” To express

this functional requirement in terms a computer can

understand, a programmer would write the following

declaration in the Java language4:

public static void sort(int[] a)

Before explaining each component of this

declaration, we emphasize that this line does not

instruct the computer to do anything. If a programmer

attempted to run this “program,” nothing would

happen because there are no instructions to run. The

3 Courier font denotes Java keywords and declarations.

4 The Java language is one part of the Java platform (J2SE),

which also includes the API and API implementations (the latter

are also called “libraries”). While the boundary between the

language and the API is indefinite, the language is generally

responsible for defining the syntax and keywords programmers

use to write software. Only the API is at issue here. See Copyright

I, 872 F. Supp. 2d at 978.

10

 line simply indicates that this declaration’s

implementation will include a command, which Java

calls a “method,” for sorting numbers. The Java

language requires almost every word in this

declaration. A programmer must type those words

exactly as they appear above, including the same

capitalization, punctuation, and order. Otherwise, the

declaration will cause an error or specify a method

with different functionality, like sorting words instead

of numbers.

The word public is a Java language keyword

that enables other programs to use sort once it has

been implemented (other keywords, like private,

restrict other programs’ access to a method). Similarly,

the Java language requires static for sort to work

as expected.5 The void keyword means that the

method does not have any output; rather than output

a sorted copy of the list, sort simply rearranges the

given list of numbers. Finally, the parentheses enclose

the method inputs. Here, the only input is the list of

integers to be sorted—designated by the Java keyword

int[].

In contrast, only two words in the declaration

leave the programmer any choice, and both are names.

The first is sort itself. This word descriptively names

the method based on the task its implementation will

perform. While it would be possible to use a

5 The Java language primarily views programs in terms of

interactions among “objects” representing the program’s data.

Related objects are members of the same “class.” Adding the

static keyword to a method declaration allows that method to

be called on all objects of a class even if the method could not be

added to the class directly, as is the case here.

11

 synonym—perhaps “arrange” or “order”—for the same

method, few names are as intuitive as sort to describe

the task this method’s implementation will perform.

Particularly short and intuitive names for common

operations like sort become customary terms of art

used across interfaces.6 Deliberate naming enhances

an interface’s readability and minimizes errors,

especially when, as is typically the case, that interface

is designed and used by different programmers.

Similarly, a names the input “array,” or list, of

numbers to be sorted. Just as with sort, the

programmer designing the interface chooses the

input’s name. Other options could be “array,”

“numbers,” or “list.” But just as with sort, the

universe of reasonable names is small and further

restricted by linguistic convention. While software

interface designers have some choice for naming

methods and inputs, the method’s function, name

length, and clarity constrain their choice. Particularly

for programming language interfaces, which define

the most basic commands used across programs, there

are few practical options for naming declarations that

satisfy these constraints.

6 As of January 2020, eight of the top ten most used programming

languages (Java, Python, C++, C#, Visual Basic .NET,

JavaScript, PHP, and Swift) include a command called sort to

arrange a list in ascending order. See TIOBE Index for January

2020, TIOBE (last visited Jan. 5, 2020),

https://www.tiobe.com/tiobe-index.

12

 ii. Implementations provide the step-by-

step instructions to perform the tasks

declarations specify

Once a software interface has been designed,

programmers can supply implementations to carry out

the tasks specified by its declarations. Google, for

example, wrote its own implementations for the Java

API’s declarations. Implementations take the inputs

listed in declarations and manipulate them to produce

the correct output. While the syntax of the

programming language dictates the form of each

declaration, implementations are open-ended and can

be thousands of lines long. Naïve implementations can

be prohibitively slow or use excessive amounts of

memory. In contrast, clever implementations can run

quickly enough to make formerly unfeasible

operations practical or conserve enough memory to

allow programs to run on entirely new hardware—

such as phones, tablets, televisions, or even home

thermostats—that have far less memory available

than desktop computers.

Computer scientists have evaluated dozens of

implementations for sort. One of the simplest

implementations is “selection sort.” Given a list of

numbers, a selection sort implementation starts at the

beginning of the list and walks through number by

number, keeping a running tally of the smallest

number it has found. Once it reaches the end of the

list, it swaps the smallest number with the number at

the beginning of the list. Then, the program searches

through the remainder of the list a second time, this

time looking for the second smallest number to swap

into the second position. This process repeats until the

program has swapped every number into its correct

13

 position. Unfortunately, this implementation is

prohibitively slow for large lists of numbers.

More sophisticated implementations for sort,

like “quicksort” or “mergesort,” can sort even large

lists efficiently. With modern data sets comprising

hundreds of millions or even billions of numbers,

names, or images, inefficient sorting implementations

like selection sort make entire categories of programs

impossible to use. Because different devices have

different constraints, software engineers devote

considerable effort to choosing the best

implementation to meet their specific needs. Their

choice could mean the difference between the success

of two competing pieces of software.

iii. SSOs establish how software

interfaces group related declarations

Because interfaces can include tens of thousands

of declarations, their designers organize related

declarations in the same way users organize related

files into folders on their desktop. In fact, Java’s

designers organized the Java API’s files in exactly this

way. See Figure 1.

Figure 1

14

 Java’s API is organized in three tiers: packages,

classes, and methods. Packages correspond to folders,

classes to files, and declarations to individual lines in

a file. The full file path for sort, for example, is

java.util.Arrays.sort. The overall folder for the

interface is named java, while util, short for utility,

is the name of the package, or subfolder, containing

the API’s various general-purpose classes. One such

class, Arrays, is a file that contains methods for

manipulating lists of objects, like numbers. One of the

lines in Arrays is the declaration given above for

sort.

Programmers who reimplement, i.e., provide their

own implementation for, an interface must maintain

its SSO. Failure to do so will necessarily result in

incompatibility. Just as users must know how to

navigate to their saved documents, programmers

using a software interface must specify the path for

each declaration they use, like sort, so that the

computer knows where to find the corresponding

implementation. Telling a person to click on “My

Documents,” then on a folder called “Receipts,” and

finally on a file called “Sofa” to find how much their

sofa cost is just like a program navigating through the

Java API to a package called util and opening a class

called Arrays to find the implementation for the sort

method.

Changing this standard organizational scheme

would prevent a person or a program from locating the

file or implementation they need, rendering the

interface specification incompatible. Thus, while

interface designers have some choice in naming their

method declarations and inputs, programmers who

are reimplementing an existing interface, like Google

15

 did with the Java API, must use the same standard

names and structure to achieve interoperability.

B. Google Wrote Its Own Implementation

of the Java API to Promote

Interoperability and Transform Java to

Run on Smartphones

Google created the Android platform to promote

interoperability and enable Java to run on an entirely

new class of devices: smartphones. This required

Google to reimplement the Java API: It duplicated the

Java API’s declarations and SSO but wrote its own

implementations. See Copyright I, 872 F. Supp. 2d at

978. It would have been impossible for Google to make

Android interoperable, or compatible, with Java

without reimplementing the Java API.7 In this

context, making software interoperable means

reimplementing a software interface.

In both of its opinions, the Federal Circuit

questioned Google’s claim that Android

reimplemented the Java API to promote

interoperability with Java because programs written

for Android are not fully compatible with Java. Fair

Use II, 886 F.3d at 1206 n.11 (finding evidence

“unrebutted” that “Google designed Android to be

incompatible with the Java platform”); see also

Copyright II, 750 F.3d at 1371 (finding “Google’s

interoperability argument confusing”). But complete

7 We follow convention in using the terms “interoperability” and

“compatibility” interchangeably. Oracle’s requirement that

companies obtain a Java Compatibility Kit (JCK) license to

demonstrate “compatibility” is merely a licensing scheme, not a

technical necessity.

16

 compatibility is not necessary, or even desirable, to

promote interoperability in software development.

Because of its longevity, Java, and almost every

other computer system, must remain backwards-

compatible. Any program written in earlier versions of

Java must also run on later versions, or programmers

would be unable to make cumulative improvements

and the software ecosystem would break down.

However, this also means that inefficient or outdated

software survives several generations of software

development solely to maintain compatibility.

To avoid this problem, Google selectively

reimplemented portions of the Java API for Android to

eliminate functionality that was obsolete or

inappropriate for smartphones, like using a mouse.

See Copyright I, 872 F. Supp. 2d at 978. Rather than

copy Sun’s implementations, Google was careful to

write its own implementations to carry out the tasks

the Java API’s declarations specify. Google’s decision

empowered software developers to write Java

programs that run equally well on both desktops and

smartphones. See Oracle Am., Inc. v. Google Inc. (Fair

Use I), 2016 WL 3181206, at *10 (N.D. Cal. 2016).

Android was highly transformative. Creating

Android required Google to significantly expand

Java’s API in novel ways to account for external

features and constraints unique to the smartphone

context: built-in GPS tracking, limited battery life and

memory, fluctuating network connections, and an

entirely new user interface based on touchscreen

gestures. See Fair Use I, 2016 WL 3181206, at *9. In

contrast, “Sun and Oracle never successfully

developed its own smartphone platform using Java

technology.” Copyright I, 872 F. Supp. 2d at 978. While

17

 Sun did release Java ME to run Java on feature

phones, these devices are far less sophisticated than

modern smartphones. Moreover, Java ME did not

support the entire Java language, omitting basic

features like numbers with decimal points. Nor did

Java ME support key Java API features like the Java

Collections Framework, which is part of java.util,

a package necessary “to make any worthwhile use of

the [Java] language.” Copyright II, 750 F.3d at 1349.

Thus, Java ME was far less compatible with standard

Java than Android, and Java ME’s failure to include

such core functionality only underscores how

transformative Android was.

Google’s significant augmentations to Java’s API

introduced Java to an entirely new Android platform

that, with 2.5 billion active devices, is “by far” the

most-used operating system in the world. Liam Tung,

Bigger than Windows, Bigger than iOS: Google Now

Has 2.5 Billion Active Android Devices, ZD Net (May

8, 2019), https://www.zdnet.com/article/bigger-than-

windows-bigger-than-ios-google-now-has-2-5-billion-

active-android-devices-after-10-years. Programmers

using only the reimplemented packages can write

programs for desktops and smartphones using the

same familiar instructions. Additionally, because Java

and Android are both open source (meaning anyone

can read and contribute to their implementations),

Google’s focus on interoperability has enabled outside

programmers, including many amici, to contribute

improvements to both platforms simultaneously.

Contrary to the Federal Circuit’s assertion that

there was no evidence of programs that rely only on

Google’s reimplemented packages, or that “[no] such

program would be useful,” Copyright II, 750 F.3d at

18

 1371 n.15, Java and Android form parts of a broad and

largely compatible ecosystem that drastically

simplifies writing software for desktops and

smartphones. Many important programs, including

Guava (which provides efficient implementations of

numerous core functions), Gradle and Maven (which

serve as project management tools), and JUnit (which

helps test the output of a program’s subcomponents),

are routinely used with programs developed using

Java and Android.

Android revitalized this ecosystem, inspiring

renewed innovation and collaboration among

programmers. Sun’s CEO publicly congratulated

Google upon Android’s release on his official company

blog and expressed support for Android. See Brief of

Defendant-Appellee/Cross-Appellant Google Inc. at

17-18, Fair Use II, 886 F.3d 1179 (Docket No. 17-

1118), 2017 WL 2305681. Sun’s CEO also emailed

Google’s CEO directly to offer his congratulations on

Android’s success and to suggest further

improvements. See id. at 18-19. After acquiring Sun,

even Oracle initially praised Google for expanding

Java to new devices. See id. at 19.

Sun had always promoted the Java API, along

with the Java language, as free and open for all to use.

See id. at 9-10. Many amici, along with instructors at

high schools and colleges across the country, decided

to teach Java in introductory programming courses

precisely because of its free availability. Assertions

that the Java API might be copyrightable only

emerged after Oracle acquired Sun in 2010. While

Oracle does not dispute that the Java language is free

and open for all to use, it asserts a copyright interest

in the Java API. Copyright I, 872 F. Supp. 2d at 978.

19

 Even then, Oracle concedes that at least sixty-two

classes, spread across three Java API packages, are

necessary for the Java language to work. Fair Use I,

2016 WL 3181206, at *5.

As professors, textbook authors, and industry

leaders, amici have broad experience with both

teaching and using the Java language and do not

consider it to be fully separable from the Java API. In

fact, for any programming language, the core API is

integral to the language. Thus, amici agree with the

district court that “there is no bright line” between the

Java language and API. Copyright I, 872 F. Supp. 2d

at 982. Introductory Java textbooks typically

introduce the Java API at the outset, and amici know

of no Java textbook that teaches the language without

covering the API. A Java program which failed to use

the Java API would hardly be recognizable: The API is

part of what makes the Java language, Java. Indeed,

Oracle’s own online tutorials consider portions of the

Java API—including packages like

java.util.regex that it accuses Google of

infringing—“essential to most programmers” for

programming in Java. Trail: Essential Classes (The

JavaTM Tutorials), Oracle (last visited Jan. 5, 2020),

https://docs.oracle.com/javase/tutorial/essential/index.

html.

II. The Decisions Below Upend Decades of

Settled Expectations and Threaten

Future Innovation in Software

Software interfaces are essential to innovation.

For decades, programmers have relied upon

reimplementing interfaces to create fundamentally

transformative technologies. Reimplementing

20

 software interfaces also promotes innovation by

countering network effects and lock-in effects that

otherwise inhibit competition. This Court should

reverse the decisions below to preserve software

interface reimplementation and the vitality of the

software industry.

A. The Computer Industry Has Long

Relied on Freely Reimplementing

Software Interfaces to Foster

Innovation and Competition

Oracle’s attempt to assert copyright in the Java

API is historically anomalous and jeopardizes the

unparalleled innovation and competition that

continue to flourish across the computer industry. The

first practical description of an API appeared in 1951,

see generally Maurice V. Wilkes, David J. Wheeler &

Stanley Gill, The Preparation of Programs for an

Electronic Digital Computer (1951), and the specific

phrase “application programming interface” dates to

at least 1968, see Ira W. Cotton & Frank S. Greatorex,

Jr., Data Structures and Techniques for Remote

Computer Graphics, Am. Fed’n Info. Processing Soc’ys

Fall Joint Computer Conf. 533, 534-35 (1968).

Programmers have freely reimplemented software

interfaces throughout the ensuing decades. By

creating standard specifications for computer

programs to communicate with each other,

uncopyrightable software interfaces have promoted

competition in personal computing and led to the rise

of popular operating systems, programming

languages, the Internet, and cloud computing.

Google’s reimplementation of the Java API fits

21

 squarely within this tradition of innovation and

competition.

i. Interface reimplementation

unleashed the personal computer

revolution

Reimplementing software interfaces made

personal computing commonplace. IBM released its

first home computer in 1981. Software companies

developed an ecosystem of products to run on IBM’s

machine, including the popular spreadsheet program

Lotus 1-2-3 co-created by amicus Mitchell Kapor. To

run these programs, however, users had to purchase

IBM’s PC because the programs required full

compatibility with IBM’s basic input-output system

(BIOS) responsible for starting the operating system

and initializing the computer’s hardware when turned

on. To compete with IBM, programmers like amicus

Tom Jennings at software company Phoenix, along

with those at computer manufacturers, like Compaq,

reimplemented the BIOS API, including its SSO, to

enable users to run their favorite IBM-compatible

software on competing machines.

Thus, reimplementing the BIOS API resulted in

the manufacture and sale of faster, cheaper, and

compatible alternatives to IBM’s PC that could run

important programs like DOS, the operating system

responsible for Microsoft’s early success. If copyright

had prevented competitors from reimplementing

IBM’s BIOS API and making IBM-compatible PCs,

companies like Microsoft would never have been able

to revolutionize personal computing.

22

 ii. Interface reimplementation created

the world’s most ubiquitous operating

systems

Operating systems, the fundamental programs

responsible for managing all of a computer’s hardware

and software resources, depend on software interface

reimplementation. The first modern operating system,

Unix, was developed by amici Ken Thompson and

Brian Kernighan and others at AT&T Bell Labs and

released in 1969. AT&T licensed Unix’s source code to

academic institutions for a nominal fee, leading to

widespread adoption. Because commercial licenses

from AT&T were costly and restrictive, and because

hardware evolutions outpaced AT&T’s Unix API,

programmers reimplemented and extended the API

themselves.

Today, nearly 70% of websites run on Unix-based

operating systems, including the popular open source

operating system Linux. See Usage Statistics of Unix

for Websites, W3Techs (Jan. 6, 2020),

https://w3techs.com/technologies/details/os-unix.

Linux alone runs nearly 35% of Internet servers and

the 500 fastest supercomputers in the world. See id;

Steven J. Vaughan-Nichols, Linux Totally Dominates

Supercomputers, ZDNet (Nov. 14, 2017, 12:04 PM

PST), http://www.zdnet.com/article/linux-totally-

dominates-supercomputers. Android’s operating

system, the most popular in the world, see Tung, is

itself built atop Linux. And Apple, co-founded by

amicus Steve Wozniak, also reimplemented the Unix

API for its desktop OS X and mobile iOS operating

systems. Programmers’ ability to reimplement the

Unix API established a standardized design for the

https://w3techs.com/technologies/details/os-unix/all/all
https://w3techs.com/technologies/details/os-unix/all/all
http://www.zdnet.com/article/linux-totally-dominates-supercomputers
http://www.zdnet.com/article/linux-totally-dominates-supercomputers
http://www.zdnet.com/article/linux-totally-dominates-supercomputers

23

 fundamental program running on any computer: its

operating system.

iii. Interface reimplementation fueled

widespread adoption of popular

programming languages

One of the most influential programming

languages, C, became widespread due to the relative

ease of reimplementing its API to enable C programs

to run on different hardware. Open source enthusiasts

reimplemented a version of C compatible with Linux,

and industry leaders like Microsoft and Google

reimplemented C for their own products. Other

popular programming languages like C++, created by

amicus Bjarne Stroustrup, also proliferated due in

part to reimplementations of their APIs.

Similarly, Sun reimplemented existing APIs as

part of the Java platform. Java reimplemented C’s

math API, which includes methods for calculating a

variety of mathematical functions. While at Sun,

amicus Joshua Bloch oversaw Sun’s reimplementation

of the Perl programming language’s regular

expression API, which allows sophisticated text

searches and alterations. Oracle’s attempt to

copyright Java’s API and hold Google liable for

infringement of the resulting java.util.regex API

ignores Java’s own history of API reimplementation.

iv. Interface reimplementation enables

computer networks, including the

Internet, to function

The Internet relies on programmers’ ability to

reimplement standardized interfaces to transmit data.

24

 Copyrighting those interfaces would defeat the

Internet’s goal of creating a global network of

interconnected computers. In 1983, the Berkeley

Systems Research Group released the Berkeley

Systems Distribution (BSD) sockets API. Sockets

control the endpoints for any communication over the

Internet. Because the BSD sockets API was not

copyrighted, it became widely adopted: Every major

operating system reimplemented it to enable Internet

communication. Thus, programmers can write

standardized software compatible across computers to

manage Internet connectivity.

v. Interface reimplementation is

fundamental to cloud computing

Finally, reimplementing software interfaces has

been, and continues to be, fundamental to cloud

computing – the XXX. With cloud computing,

developers can rent powerful computer hardware to

run resource-intensive computations, like machine-

learning algorithms, without having to purchase and

manage expensive hardware themselves. Amazon’s

Web Services (AWS) API serves as the de facto

industry standard for cloud computing. AWS itself

reimplemented IBM’s BIOS API, enabling familiar

BIOS commands to run on Amazon’s servers. AWS

therefore allows programmers to write programs as if

they were running on a standard PC rather than learn

commands unique to Amazon.

25

 Major competitors, including Microsoft, Google,

and Oracle, have in turn adopted AWS’s API.8 Rather

than compete on the API’s design, cloud providers

compete on business factors—like price and customer

service—and on implementation factors—like latency,

downtime, and redundancy. Software interface

reimplementation therefore fosters competition in the

cloud by allowing customers to transfer their data or

programs to competing cloud providers that offer

cheaper or better service without having to learn an

entirely new interface or rewrite their software to

conform to a new specification.

B. Allowing Copyright to Restrict the

Reimplementation of Software

Interfaces Will Stifle Competition by

Increasing Barriers to Entry for

Startups and Others

The decisions below jeopardize the market for

software. Reimplementing software interfaces enables

startups to counter network effects and compete with

established players. Network effects arise when a

service’s value increases along with its number of

users. They make users unlikely to switch even to

technically “better” competing software services that

8 See Rita Zhang, Access Azure Blob Storage from Your Apps

Using S3 Java API, Microsoft (May 22, 2016),

https://www.microsoft.com/developerblog/2016/05/22/access-

azure-blob-storage-from-your-apps-using-s3-api; Cloud Storage

Interoperability, Google Cloud (last updated Oct. 23, 2018),

https://cloud.google.com/storage/docs/interoperability; Amazon

S3 Compatibility API, Oracle Cloud (last visited Jan. 6, 2020),

https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/s3compa

tibleapi.htm.

https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
https://www.microsoft.com/developerblog/2016/05/22/access-azure-blob-storage-from-your-apps-using-s3-api
https://cloud.google.com/storage/docs/interoperability;%20Amazon%20S3%20Compatibility%20API,%20Oracle%20Cloud%20(last%20visited%20Jan.%206,%202020),%20https:/docs.cloud.oracle.com/iaas/Content/Object/Tasks/s3compatibleapi.htm.
https://cloud.google.com/storage/docs/interoperability;%20Amazon%20S3%20Compatibility%20API,%20Oracle%20Cloud%20(last%20visited%20Jan.%206,%202020),%20https:/docs.cloud.oracle.com/iaas/Content/Object/Tasks/s3compatibleapi.htm.
https://cloud.google.com/storage/docs/interoperability;%20Amazon%20S3%20Compatibility%20API,%20Oracle%20Cloud%20(last%20visited%20Jan.%206,%202020),%20https:/docs.cloud.oracle.com/iaas/Content/Object/Tasks/s3compatibleapi.htm.
https://cloud.google.com/storage/docs/interoperability;%20Amazon%20S3%20Compatibility%20API,%20Oracle%20Cloud%20(last%20visited%20Jan.%206,%202020),%20https:/docs.cloud.oracle.com/iaas/Content/Object/Tasks/s3compatibleapi.htm.

26

 have not yet established a large userbase because

much of a service’s value comes from its community of

users and its secondary market of compatible services.

For example, a developer might choose not to learn a

new programming language unless it is used by

potential employers, even if that language is more

intuitive than others and produces efficient results.

On the other hand, an archaic language used by

institutional employers is worth learning, regardless

of its inefficiencies. Uncopyrightable software

interfaces address network effect barriers by enabling

startups to plug into existing systems and grow

through cumulative improvements.

Just as the first car would look laughable today,

the first word processing software would be a

laughable replacement for modern applications. Yet a

steering wheel, turn signals, and gas and brake pedals

have been standard in cars for over a century. If Tesla

had to re-invent the standard driving interface to

make electric-powered cars, it would face high barriers

in attracting new customers. See Fred von Lohmann,

The New Wave: Copyright and Software Interfaces in

the Wake of Oracle v. Google, 31 Harv. J.L. & Tech.

517, 517 (2018). In software, treating interfaces as

copyrightable would be like requiring car

manufacturers to invent a substitute for the steering

wheel. Startups would not risk manufacturing such a

car, and even if they did, consumers likely would not

purchase it.

Furthermore, extending copyright to software

interfaces would enable companies to monopolize

standard interfaces. Companies could initially make

their interfaces freely available to lure developers to

their platform, and then, after attracting a significant

27

 number of developers, demand a licensing fee for

further use. These fees would be passed on to

consumers, making software more expensive.

Copyrightable interfaces could also curtail employee

mobility because different employers would use

competing proprietary APIs, and employees with

expertise in one proprietary API would be less

desirable to employers using another. Innovation

could stagnate.

Amazon, for example, could follow Oracle’s lead

and use the decisions below to force every company

that has reimplemented its cloud storage APIs to pay

a licensing fee, stifling competition in a vibrant

market valued at $42 billion in 2017 and projected to

reach $72 billion by 2019. See Jay Greene & Laura

Stevens, “You’re Stupid If You Don’t Get Scared”:

When Amazon Goes from Partner to Rival, Wall St. J.

(June 1, 2018, 5:30 AM ET),

https://www.wsj.com/articles/how-amazon-wins-

1527845402. Amazon could gain a monopoly over

cloud storage until its competitors redesigned their

systems from scratch to avoid infringing on Amazon’s

APIs. The decisions below will transform copyright

into a tool for incumbents to wield to improperly stave

off competition.

Forcing companies that reimplement APIs to rely

on fair use will not meaningfully address these anti-

competitive effects. A fair use standard creates

uncertainty because it depends on fact-intensive, case-

by-case determinations which can result, as

demonstrated by this case, in lengthy and

prohibitively expensive litigation. Rather than risk

crippling lawsuits, startups will choose not to enter

markets at all or will undertake inefficient

28

 workarounds. Restricting API reimplementation to

situations where fair use can be established would

impede innovation and competition almost as much as

denying reimplementation outright: Users will suffer

from fewer product choices, higher prices, and

incompatible software.

C. Restricting the Reimplementation of

Software Interfaces Will Exacerbate

Lock-In Effects and Create an “Orphan

Software” Problem

Reimplementing software interfaces protects

consumers from lock-in effects by promoting

interoperability among operating systems, programs,

and Internet browsers. Consumers depend on

operating systems that run on their hardware,

programs that run across operating systems, and

Internet applications that run across browsers. Under

the decisions below, software interfaces enabling

interoperability might require expensive licenses, and

their owners could significantly restrict their use.

Consumers will face higher prices and fewer choices.

Software will become harder to use because switching

to a competing service will require users to learn an

unfamiliar interface. Rather than switch to more

innovative software, users will remain locked in to

outdated systems.

If software interfaces are copyrightable, it will

become economically infeasible to continue using

orphan software, i.e., software no longer supported or

updated by its creator. Previously, when copyrighted

software became unsupported, developers could

reimplement its interface to allow it to run on new

systems. When NASA needed to refurbish old

29

 manufacturing robots for a project, for example, it

contracted with a company to reimplement the

interface necessary for integrating newly

manufactured memory chips with the old robot

hardware. Had the interface been copyrighted, NASA

would have needed to purchase new robots at a

significantly higher cost.

Restricting the reimplementation of software

interfaces could make generations of software

unusable by the people and organizations who paid for

them, hindering, rather than promoting, “the Progress

of Science and useful Arts.” U.S. Const. art. I, § 8, cl.

8. Copyrightable interfaces would particularly harm

public, nonprofit, and research-based entities because

of their limited resources, undermining crucial

services for public health and safety, national defense,

and access to justice.

CONCLUSION

The Court should reverse the decisions below and

hold that software interfaces are not copyrightable to

ensure continued innovation and protect competition

in the software industry.

30

January 13, 2019

Respectfully submitted,

Phillip R. Malone

Counsel of Record

JUELSGAARD INTELLECTUAL

PROPERTY AND INNOVATION

CLINIC

MILLS LEGAL CLINIC AT

 STANFORD LAW SCHOOL

559 Nathan Abbott Way

Stanford, CA 94305

(650) 725-6369

pmalone@law.stanford.edu

mailto:pmalone@law.stanford.edu

A1

APPENDIX A — LIST OF AMICI CURIAE

(In alphabetical order)

Amici sign this brief on their own behalf and not

on behalf of the companies or organizations with

which they are affiliated; those affiliations are for

identification purposes only.*

1. Harold Abelson.** Dr. Harold “Hal” Abelson

is a Professor of Electrical Engineering and Computer

Science at MIT, and a fellow of the IEEE. . . .

*The * indicates five amici who are current Google employees, **

indicates two amici who receive some support from Google, †

indicates two amici who testified as unpaid fact witnesses at trial

in this case, and ‡ indicates one amicus who was retained as an

expert by Google but did not testify at trial. Each of these amici

sign this brief based on their personal experience and beliefs as

individual computer scientists whose work in the field long

preceded their affiliation with Google or their participation in

this case.

