
Memory: on the hardware side
1

@ http://computer.howstuffworks.com/computer-memory.htm/printable

Memory: on the software side
2

Each programming languages offers a different
abstraction

The goal is to make programming easier and improve
portability of code by hiding irrelevant hardware
oddities

Each language offers a memory API -- a set of
operations for manipulating memory

Memory: the C++ Story
C++ offers a story both simpler and more complex than Java
Memory is a sequence of bytes, read/written from an address
Addresses are values manipulated using arithmetic operations
Memory can be allocated:
‣Statically

‣Dynamically on the stack

‣Dynamically on the heap

Types give the compiler a hint how to interpret a memory addresses

3

Heap

0x1000434

Stages of Compilation
4

Preprocessor

Front-end

Back end

Optimizer

Assembler

Linker

 Debugging Options
 -dletters -dumpspecs -dumpmachine -dumpversion …

 Optimization Options
 -falign-functions=n -finline-functions -fno-inline
 -O -O0 -O1 -O2 …

 Preprocessor Options
 -Dmacro[=defn] -E -H ...

 Assembler Option
 -Wa,option -Xassembler option ...

 Linker Options
 object-file-name -llibrary -nostartfiles -nodefaultlibs
 -nostdlib -pie -rdynamic -s -static -shared ..

 Code Generation Options
 -fcall-saved-reg -fcall-used-reg -ffixed-reg -fexceptions
 -fnon-call-exceptions -funwind-tables…

Trivia: Where does the name a.out comes from?
A: “assembler output”…

Memory areas
5

Operationally… it’s all about the
Stack

 The operating system creates a
process by assigning memory and
other resources

 Stack: keeps track of the point to which each active
subroutine should return control when it finishes
executing; stores variables that are local to
functions

 Heap: dynamic memory for variables that are
created with malloc, calloc, realloc and disposed of
with free

 Data: initialized variables including global and static
variables, un-initialized variables

 Code: the program instructions to be executed

Stack

Heap

Code

Data

Virtual Memory

7

Tuesday, February 1, 2011

The operating system creates a process by
assigning memory and other resources

‣Stack: keeps track of the point to which each active
subroutine should return control when it finishes
executing; stores variables that are local to functions

‣Heap: dynamic memory for variables that are
created with new and disposed of with delete

‣Data: initialized variables including global and static
variables, un-initialized variables

‣Code: the program instructions to be executed

Stack frame
Parameters for the procedure

Save current PC onto stack (return
address)

Save current SP value onto stack

Allocates stack space for local
variables by decrementing SP by
appropriate amount

Return value passed by register

6

Stack frame

SP

Parameters

Return address

Stack Frame Pointer

Local variables Stack

Growth

 Parameters for the
procedure

 Save current PC onto
stack (return address)

 Save current SP value
onto stack

 Allocates stack space
for local variables by
decrementing SP by
appropriate amount

11

Tuesday, February 1, 2011

Static and Stack allocation
Static allocation
with the
keyword static
Stack allocation
automatic by the
compiler for
local variables
printf can
display the
address of any
identifier

7

#include <stdio.h>

static int sx;
static int sa[100];
static int sy;

int main() {
int lx;
static int sz;

printf("%p\n", &sx);
printf("%p\n", &sa);
printf("%p\n", &sy);
printf("%p\n", &lx);
printf("%p\n", &sz);
printf("%p\n", &main);

0x100001084
0x1000010a0
0x100001230
0x7fff5fbff58c
0x100001080
0x100000dfc

Static and Stack allocation
Any value can be
turned into a
pointer (but bad
style)

Arithmetics on
pointers allowed

Nothing prevents
a program from
writing all over
memory (again
bad)

8

static int sx;
static int sa[100];
static int sy;

int main() {
 for(p= (int*)0x100001084;
 p<=(int*)0x100001230;
 p++)
 {
 *p = 42;
 }
 printf("%i\n",sx);
 printf("%i\n",sa[0]);
 printf("%i\n",sa[1]);

42
42
42

http://en.wikipedia.org/wiki/Hexadecimal

Byte
A byte = 8 bits
‣Decimal 0 to 255
‣Hexadecimal 00 to FF

‣Binary 00000000 to 11111111

In C++:
‣Decimal constant: 12
‣Octal constant: 014
‣Hexadecimal constant: 0xC

9

Words
Hardware has a `Word size` used to hold integers and
addresses

The size of address words defines the maximum amount of
memory that can be manipulated by a program

Two common options:
‣32-bit words => can address 4GB of data
‣64-bit words => could address up to 1.8	x	1019

Different words sizes (integral number of bytes, multiples and
fractions) are supported

10

Addresses
Addresses specify byte location
in computer memory
‣address of first byte in word

‣address of following words differ
by 4 (32-bit) and 8 (64-bit)

11

Carnegie Mellon

7

J1.+:B."(*#(+&C(81.'&B.-)*"D)61*&

!  F++.($$($&=5(0"7'&!'#(&
N10)61*$&
!  :--+477',U'g+7*'N6*4'H)'V,+-'
!  :--+47747',U'7.//477HC4'V,+-7'-HW4+'

N6'`'_%$#NH*a',+'c'_=`#NH*a'

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit!
Words! Bytes! Addr.!

0012
0013
0014
0015

64-bit!
Words!

Addr !
=!
??

Addr !
=!
??

Addr !
=!
??

Addr !
=!
??

Addr !
=!
??

Addr !
=!
??

0000

0004

0008

0012

0000

0008

Carnegie Mellon

1

!"#$%&!'#($%&)*+&,*#(-(.$&

!"#$!%&'()*+,-./0,)'*,'1,23.*4+'567*427'
$)-'84/*.+49':.;<'$=9'$>!>'

,*$#./0#1.$2''

?@)-6'A+6@)*'@)-'B@C4'DEF@GG@+,)'©

Data Types
The base data type
‣int - used for integer numbers
‣float - used for floating point numbers

‣double - used for large floating point numbers
‣char - used for characters
‣void - used for functions without parameters or return value

Composite types are
‣pointers to other types

‣arrays of other types

12

Qualifiers, Modifiers & Storage
Type qualifiers
‣short - decrease storage size
‣long - increase storage size

‣signed - request signed representation
‣unsigned - request unsigned representation

Type modifier
‣const - value not expected to change

Storage class
‣static - variable that are global to the program

‣extern - variables that are declared in another file

13

Sizes
14

Type Range (32-bits) Size in
bytes

signed char −128 to +127 1

unsigned char 0 to +255 1

signed short int −32768 to +32767 2

unsigned short int 0 to +65535 2

signed int −2147483648 to +2147483647 4

unsigned int 0 to +4294967295 4

signed long int −2147483648 to +2147483647 4 or 8

unsigned long int 0 to +4294967295 4 or 8

signed long long int −9223372036854775808 to +9223372036854775807 8

unsigned long long int 0 to +18446744073709551615 8

float 1×10−37 to 1×1037 4

double 1×10−308 to 1×10308 8

long double 1×10−308 to 1×10308 8, 12, or 16

Character representation
ASCII code (American Standard Code for Information
Interchange): defines 128 character codes (from 0 to 127),
Examples:
‣The code for ‘A’ is 65
‣The code for ‘a’ is 97

‣The code for ‘b’ is 98
‣The code for ‘0’ is 48
‣The code for ‘1’ is 49

15

Strings

"Hello"
‣A string literal is a sequence of characters delimited by double quotes

‣ It has type const char* and is initialized with the given characters
‣The compiler places a null byte (\0) at the end of each literal
‣A double-quote (") in a string literal must be preceded by a backslash (\)
‣Creating an array of character:

 const char* c = "Hello";
 char c[6] = "Hello";

16

H e l l o \0

Declarations
The declaration of a variable allocates storage for that variable
and can initialize it

 int lower = 3, upper = 5;
 char c = ‘\\’, line[10], he[3] = “he”;
 float eps = 1.0e-5;
 char arrdarr[10][10];
 unsigned int x = 42U;
 char* ardar[10];
 char* a;
 void* v;

Without an explicit initializer local variables may contain
random values (static and extern are zero initialized)

17

Conversions
What is the meaning of an operation with operands of different
types?

 char c; int i; … i + c …

The compiler will attempt to convert data types without losing
information; if not possible emit a warning and convert anyway

Conversions happen for operands, function arguments, return
values and right-hand side of assignments.

18

Conversions

T op T’: //symmetrically for T’
 if T=long double then convert long double
elseif T=double then convert double
elseif T=float then convert float
elseif T=unsigned long int then convert unsigned long int
elseif T=long int then convert long int
elseif T=unsigned int then convert unsigned int

‣Conversions to between signed and unsigned integers slightly
surprising due to two’s complement representation (look it up)
‣character can be converted to integral types

19

Conversion
signed to unsigned conversion

20

Carnegie Mellon

36

>'

1+./)

1+,-)

T!'
T$'

>'

*+./)
*+./'T'!)

1+./)
1+./))l'!)

$E7'1,23G424)*'
?@);4'

O)7H;)4-'
?@);4'

G1*<(.$"1*&?"$/);"D(+&
!  _`$&G185a&#&]*$"-*(+&

!  D+-4+H);'()C4+7H,)'
!  \4;@0C4'#'AH;'Z,7H0C4'

Carnegie Mellon

1

!"#$%&!'#($%&)*+&,*#(-(.$&

!"#$!%&'()*+,-./0,)'*,'1,23.*4+'567*427'
$)-'84/*.+49':.;<'$=9'$>!>'

,*$#./0#1.$2''

?@)-6'A+6@)*'@)-'B@C4'DEF@GG@+,)'©

Casts

static_cast<T>(x)
dynamic_cast<T*>(x)
reinterpret_cast<T>(x)
const_cast<T>(x)

A cast converts the value held in variable x to type T
With the exception of dynamic casts, all other casts leave the
value unchanged, but return it at another type.
Dynamic casts are limited to pointers to objects, and return
nullptr if the object is not of the required type

21

Parameter passing
By-value semantics:
‣Copy of param on function entry, initialized to value passed by caller
‣Updates of param inside callee made only to copy

‣Caller’s value is not changed (updates to param not visible after return)

22

To swap or not to swap?
int y = 20, x = 10;
swap(x,y);

void swap(int a, int b) {
 int t = a;
 a = b;
 b = t;
}

23 What’s wrong with this code?

void swap(int a, int b){
 int tmp;
 tmp = a;
 a = b;
 b = tmp;
}

int x = 10;
int y = 20;

swap(x,y)

 10 20

x y

 10 20

a b

16

Sunday, January 23, 2011

To swap!
24

How does this fix the problem?

17

void swap(int* a, int* b){
 int tmp;
 tmp = *a;
 *a = *b;
 *b = tmp;
}

Call swap(&x,&y) for integers x and y

 10 20

x y

a b

Sunday, January 23, 2011

int y = 20, x = 10;
swap(x,y);

void swap(int& a, int& b) {
 int t = *a;
 *a = *b;
 *b = t;
}

Basics
char c; declares a variable of type character
char* pc; declares a variable of type pointer to character
char** ppc; declares a variable of type pointer to pointer to character

c = ‘a’; initialize a character variable
pc = &c; get the address of a variable
ppc = &pc; get the address of a variable

c == *pc == **ppc

25

‘a’ c

pc

ppc

Experimenting...

#include <stdio.h>

int main() {

 char c='a';
 char* pc=&c;
 char** ppc=&pc;

 printf("%p\n", pc);
 printf("%p\n", ++pc);
 printf("%p\n", ppc);
 printf("%p\n", ++ppc);
}

26

0x7fff6540097b
0x7fff6540097c
0x7fff65400970
0x7fff65400978

Basics
A variable declared as a pointer has the size of a memory
address on the current architecture (e.g. 4 bytes or 8 bytes)

Incrementing a pointer adds a multiple of the pointer target
size (e.g. 1 for characters, 2 for short, …)

Pointers are initialized with addresses obtained by the &
operator or the value nullptr

A pointer can be dereferenced by prefix a pointer value with
the * operator

Attempting to dereference a nullptr pointer will result in an
error caught by the hardware (bus error or segmentation fault)

27

Examples
char c = ‘a’; value of c = 97, address of c=0xc00f4a20

char* pc = &c; value of pc=0xc00f4a20, address of pc=0xc00eaa1c

pc value 0xc00f4a20

*pc value 97

**pc compile warning, runtime error

c value 97

&c value 0xc00f4a20

&&c compile error

28

Arrays
char a[2][3];

Creates a two dimensional array of characters

What is the value of a?

What is the address of a?

What is the relationship between arrays and pointers?

Can they be converted?

29

Experimenting…
char a[2][3];

printf("%p\n", a);
printf("%p\n", &a);
printf("%p\n", &a[0]);
printf("%p\n", &a[0][0]);
printf("%p\n", &a[0][1]);
printf("%p\n", &a[0][2]);
printf("%p\n", &a[1][0]);
printf("%p\n", &a[1][1]);

30

0x7fff682ba976
0x7fff682ba976
0x7fff682ba976
0x7fff682ba976
0x7fff682ba977
0x7fff682ba978
0x7fff682ba979
0x7fff682ba97a

Arrays
char a[2][3];

An array variable’s value is the address of the array’s first
element

A multi-dimensional array is stored in memory as a single array
of the base type with all rows occurring consecutively

There is no padding or delimiters between rows

All rows are of the same size

31

Pointers and arrays
There is a strong relationship between pointers and arrays

 int a[10];
 int* p;

A pointer (e.g. p) holds an address while the name of an array
(e.g. a) denotes an address

Thus it is possible to convert arrays to pointers

 p = a;

Array operations have equivalent pointer operations

 a[5] == *(p + 5)

Note that a=p or a++ are compile-time errors.

32

Pointers to arrays
char a[2][3];

Multi-dimensional array that stores two strings of 3 characters.
(Not necessarily zero-terminated)

char a[2][3]={“ah”,”oh”};

Array initialized with 2 zero-terminated strings.

char *p = &a[1];

while(*p != ‘\0’) p++;

Iterate over the second string

33

Pointer to pointer
 int i = 5;
 int *p = &i;
 int **pp = &p;

Think about it as *pp is an int*, that is, p is a pointer to
pointer to int

 char *s[3] = {"John", "Dan", "Christopher"};

 // s is a char **
char **p = s;

34

Memory Allocation Problems
Memory leaks
‣Alloc’d memory not freed appropriately
‣If your program runs a long time, it will run out of
memory or slow down the system
‣Always add the free on all control flow paths after
a malloc

35

String *p = new String*[sz];
/*the buffer needs to double*/
String *newp = new String[sz*2];
for (int i=0;i<sz;i++) newp[i]=p[i];
p = newp;

Memory Allocation Problems
36

Use after free
‣Using dealloc’d data
‣Deallocating something twice

‣Deallocating something that was not allocated
Can cause unexpected behavior. For example, malloc can fail if
“dead” memory is not freed.
More insidiously, freeing a region that wasn’t malloc’ed or freeing a
region that is still being referenced

int *ptr = new int;
delete ptr;
ptr = 7; / Undefined behavior */

Memory Allocation Problems
Memory overrun
‣Write in memory that was not allocated
‣The program will exit with segmentation fault

‣Overwrite memory: unexpected behavior

37

 int* y= …
 int* x= y++;
 for(p=x; p>y; p++)
 *p=42;

Memory Allocation Problems

Fragmentation
‣The system may have enough memory but not in contiguous region

38

 int* vals[10000];

 int i;
for (i = 0; i < 10000; i++)
vals[i] = new int*;

for (i = 0; i < 10000; i = i + 2)
delete vals[i];

A gentle recap of the story so far

Go the Fuck to Sleep

by Adam Mansbach t illustrated by Ricardo Cortés

“Total genius.” –Jonathan Lethem, father of two
“This is no-guilt funny and a godsend!” –Cristina García, mother of one

strip.c
#include <stdio.h>
#include <string.h>

int main() {
 int c = 0, in = 0;
 char buf[2048]; char *p = buf;

 while((c = getchar()) != EOF) {
 if(c=='<' || c=='&') in=1;
 if(in) *p++=c;
 if(c=='>' || c==';') {
 in = 0;
 *p++ = '\0';
 if(strstr(buf,"nbsp")||strstr(buf,"NBSP"))
 printf(" ");
 p = buf;
 } else if(!in) printf("%c", c);
 }
}

40

Includes

#include <stdio.h>
#include <string.h>

‣Tell the compiler about external functions that may be used by the program
‣Pre-processor directives, expended early in the compilation
‣stdio defines functions getchar/printf
‣string defines strstr

41

Main

int main() {
 return 0;

 }
‣C programs must have a main() function
‣main() called first when the program is started by the OS

‣main() returns an integer
‣without a return statement, undefined value is returned
‣The correct signature for main() is:

 int main(int argc, const char* argv[]) { }

42

Getchar/printf

int c = 0;

while((c = getchar()) != EOF)
 printf("%c", c);

‣getchar() returns 1 character from “standard input” converted to an int
‣If the stream is at end-of-file or a read error occurs, EOF is returned
‣printf() outputs a string to the standard output
‣printf() takes a format string and a variable numbers of arguments that
are converted to characters according to the requested format

43

Looping

int c = getchar();
while(c != EOF) {
 printf("%c", c);
 c = getchar();
}

‣another way to express the same behavior
‣assignments are expressions, the same program without nesting

44

Arrays & pointers
int c = 0, in = 0;
char buf[2048]; char *p = buf;

while((c = getchar()) != EOF) {
 if(c=='<' || c=='&') in = 1;
 if(in) *p++=c;
 if(c=='>' || c==';') {
 in = 0; *p++ = '\0';
 }
}

‣buf is an array of 2048 characters;
‣p is pointer in the buffer
‣boolean value false is 0, any non-0 is true

45

Arrays
 char buf[2048]; int pos=0;

 while((c = getchar()) != EOF) {
 ...
 if(in) buf[pos++] = c;
 if(c=='>'||c==';') {
 buf[pos++]='\0';
 pos=0;
 }

‣the same program without pointers
‣an alternative to pointers is to use an index in the array of chars
‣strings must be \0 terminated (or risk a buffer overflow…)

46

Strstr
 char buf[2048]; char *p = buf;
 ...
 if(state) *p++=c;
 ...
 *p++ = '\0';
 if(strstr(buf,"nbsp")||strstr(buf,"NBSP"))
 printf(" ");
 p = buf;

‣strstr(s1,s2) locates the first occurrence of s2 in s1.

‣ if s2 occurs nowhere in s1, nullptr is returned; otherwise a pointer to
the first character of the first occurrence of s2 is returned

‣nullptr is false, || is logical or

47

strip.c
int main() {
 int c = 0, in = 0;
 char buf[2048]; char *p = buf;
 while((c = getchar()) != EOF) {
 if(c=='<' || c=='&') in=1;
 if(in) *p++=c;
 if(c=='>' || c==';') {
 in = 0;
 *p++ = '\0';
 if(strstr(buf,"nbsp")||strstr(buf,"NBSP"))
 printf(" ");
 p = buf;
 } else if(!in) printf("%c", c);
 }
}

48

Arrays
char buf[2048];
buff[0] = ‘a’; buff[1] = buff[0];
‣Array variables a declared with the T[] syntax

‣ Items that are not explicitly initialized will have an indeterminate value
unless the array is of static storage duration

‣ Initialize x as a one-dimensional array with 3 members, because no size
was specified and there are 3 initializers:

int x[] ={1,3,5};
‣Bracketed initialization: 1, 3, and 5 initialize the first row of the array
y[0], namely y[0][0],... The initializer ends early:

float y[3][3] = {
 { 1, 3, 5 },
 { 2, 4, 6 },
 { 3, 5, 7 } };

49

Of chars and ints & conversions

 int c;
 char buf[1];
 c = getchar();
 buf[0] = c;

‣Conversions from an integer value to a character do not lose
information if the integer is in the valid range for characters
‣The value EOF is not a valid character value

50

Files

Stdio.h
Provides general operations on files

A file is an abstraction of a non-volatile memory region:
‣ its contents remain even after the program exits
‣ it exposes the file abstraction using the FILE type:

FILE *fp // *fp is a pointer to a file

‣Can only access the file using the interfaces provided

52

File Systems
53

A file system specifies how information is organized on disk
and accessed
‣directories

‣files

In UNIX the following are files
‣Peripheral devices (keyboard, screen, etc
‣Pipes (inter process communication)
‣Sockets (communication via computer networks)

Files representation
‣Text files (human readable format)
‣Binaries (for example executables files)

File manipulation
Three basic actions:
‣open the file: make the file available for manipulation

‣ read and write its contents
No guarantee that these operations actually propagate effects to the underlying file system

‣close the file: enforce that all the effects to the file are “committed”

54

To operate on a file, the file must be opened

An open file has a non-negative integer called file descriptor

For each program the OS opens implicitly three files: standard
input, standard output and standard error, that have associated
the file descriptors 0, 1, 2 respectively

‣Primitive, low-level interface to input and output operations
‣Must be used for control operations that are specific to a particular kind

of device.

File Descriptors
55

Streams
Higher-level interface, layered on top of file descriptor facilities

More powerful set of functions

Implemented in terms of file descriptors
‣ the file descriptor can be extracted from a stream and used for low-level

operations
‣a file can be open as a file descriptor and then make a stream associated

with that file descriptor.

56

Opening files
FILE* fopen(const char* filename, const char* mode)
‣mode can be “r” (read), “w” (write), “a” (append)
 returns NULL on error (e.g., improper permissions)
 filename is a string that holds the name of the file on disk

int fileno(FILE *stream)
‣returns the file descriptor associated with stream

char *mode = "r";
FILE* ifp = fopen("in.list", mode);
if(ifp==NULL){fprintf(stderr,"Failed");exit(1);}
FILE* ofp = fopen("out.list", "w");
if (ofp==NULL) {...}

57

Reading files
fscanf requires a FILE* for the file to be read

fscanf(ifp, “<format string>”, inputs)

Returns the number of values read or EOF on an end of file

Example: Suppose in.list contains
 foo 70
 bar 50

To read elements from this file, we might write
 fscanf(ifp, “%s %d”, name, count)

Can check against EOF:

 while(fscanf(ifp,“%s %d”,name,count)!=EOF);

58

Testing EOF
Ill-formed input may confuse comparison with EOF

fscanf returns the number of successful matched items
while(fscanf(ifp,“%s %d”,name,count)==2)

Can also use feof:
while (!feof(ifp)) {
 if (fscanf(ifp,“%s %d”,name,count)!=2) break;
 fprintf(ofp, format, control)
}

59

Closing files
 fclose(ifp);

Why do we need to close a file?

File systems typically buffer output

 fprintf(ofp, “Some text”)

There is no guarantee that the string has been written to disk

Could be stored in a file buffer maintained in memory

The buffer is flushed when the file is closed, or when full

60

Raw I/O
Read at most nobj items of size sz from stream into p

feof and ferror used to test end of file

size_t fread(void* p,size_t sz,size_t nobj,FILE* stream)

Write at most nobj items of size sz from p onto stream

size_t fwrite(void*p,size_t sz,size_t nobj,FILE* stream)

61

File position
int fseek(FILE* stream, long offset, int origin)

Set file position in the stream. Subsequent reads and writes
begin at this location
Origin can be SEEK_SET,SEEK_CUR,SEEK_END for binary files

For text streams, offset must be zero (or value returned by ftell)
Return the current position within the stream

long ftell(FILE * stream)

Sets the file to the beginning of the file

void rewind(FILE * stream)

62

Example
#include <stdio.h>
int main() {
 long fsize;
 FILE *f;

 f = fopen(“log”, “r”);

 fseek(f, 0, SEEK_END) ;
 fsize = ftell(f) ;
 printf(“file size is: %d\n”, fsize);

 fclose(f);
}

63

Text Stream I/O Read
Read next char from stream and return it as an unsigned char
cast to an int, or EOF
int fgetc(FILE * stream)

Reads in at most size-1 chars from the stream and stores them
into null-terminated buffer pointed s. Stop on EOF or error
char* fgets(char *s, int size, FILE *stream)

Writes c as an unsigned char to stream and returns the char
int fputc (int c, FILE * stream)

Writes string s without null termination; returns a non-negative
number on success, or EOF on error

int fputs(const char *s, FILE *stream)

64

