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Abstract. Implementing a new programming language by the means of
a translator to an existing language is attractive as it provides portability
over all platforms supported by the host language and reduces the devel-
opment time as many low-level tasks can be delegated to the host com-
piler. The C and C++ programming languages are popular choices for
many language implementations due to the availability of efficient com-
pilers on many platforms, and good portability. For garbage-collected
languages, however, they are not a perfect match as they provide no
support for accurately discovering pointers to heap-allocated data. We
evaluate the published techniques, and propose a new mechanism, lazy
pointer stacks, for performing accurate garbage collection in such unco-
operative environments. We implemented the new technique in the Ovm
Java virtual machine with our own Java-to-C++ compiler and GCC as a
back-end, and found that our technique outperforms existing approaches.

1 Introduction

Implementing a high-level programming language involves a large development
effort. The need for performance of the resulting environment has to be balanced
against portability and extendibility. One popular implementation technique is
to use a language translator to transform the code into an existing language,
thus leveraging existing technology for part of the implementation. A time tested
road has been to use C or C++ as a form of portable assembly language. This
approach takes advantage of the portability of C++ and offloads many opti-
mizations to the native compiler.

However, these advantages come at a price. Some control over representation
and code generation must be relinquished. One often encountered problem is
that a C++ compiler such as GCC[1] will not provide support for automatic
memory reclamation. It is up to the language implementer to bridge the semantic
mismatch between the features of the high-level language and what is available
in the low-level language. In the case of garbage collection, implementers end up
programming around the C++ compiler to ensure that garbage can be reclaimed.

The most straightforward solution to the problem is to use a conservative
garbage collection algorithm. A conservative collector does not require cooper-



ation from its environment–it will traverse the stack and heap, and treat every
value that could possibly be a pointer as a pointer. However, there are draw-
backs. Unused memory may not be freed because of a non-pointer word that
looks like a pointer to a dead object. Memory defragmentation is less effective,
as values that may or may not be pointers cannot be freely updated when objects
are moved. In the domain of real-time systems, all application deadlines must
be met even in the presence of collector-induced pauses. For this, the garbage
collector has to be predictable–a trait not found in conservative collectors.

This paper looks at how to support accurate garbage collection, in which all
pointers can be correctly identified in an uncooperative environment. Although
our work environment is Java, the discussion generalizes to other high-level lan-
guage translators. We evaluate several approaches to generating idiomatic C++
code that maintains enough information to allow a garbage collector to accu-
rately find and replace pointers. Our goal is to minimize the overheads, bringing
the performance of our accurate configuration as close as possible to that of our
conservative configuration. The work is being done in the context of the Ovm
virtual machine framework. We offer the following contributions:

– Lazy pointer stack: We present a class of new techniques for maintaining
accurate information on the call stack. It promises lower overheads than
previous work because the information is only materialized when needed
leaving the native compiler free to perform more optimizations.

– Catch & thunk stack walking: We propose an efficient technique for
saving and restoring the pointers on a call stack, which extends lazy pointer
stacks by exploiting the exception handling features of the C++ language.

– Implementation: We implemented our technique in the Ovm framework.
We report on our implementation and describe our optimizations.

– Evaluation: We compare our technique against an efficient conservative
collector and two previously published techniques for accurate collection. The
results suggest that our approach incurs less overhead than other techniques.

– Validation: We report on the implementation of a real-time garbage collec-
tor within Ovm using lazy pointer stacks to obtain accurate stack roots.

2 The Ovm Virtual Machine

Ovm is a framework for building virtual machines with different features. An
Ovm configuration determines a set of features to be integrated into an exe-
cutable image. While Ovm supports many configurations, one of the project’s
topmost goals was to deliver an implementation of the Real-time Specification
for Java running at an acceptable level of performance [4]. This section discusses
the two most important aspects of the real-time configuration of Ovm with re-
spect to our implementation of the collection algorithms described in this paper.
Sources and documentation for Ovm are available from our website [5]. The
reader is referred to [6, 4, 7] for further description of the framework.

The J2c Compiler. The Real-time Ovm configuration relies on ahead-of-time
compilation to generate an executable image that can be loaded in an embedded



device (such as the UAV application discussed in [4]). The Ovm ahead-of-time
compiler called j2c performs whole-program analysis over the user code as well
as the Ovm source (the virtual machine framework consists of approximately
250’000 lines of Java code). j2c translates the entire application and virtual
machine code into C++, which is then processed by the GCC compiler.

The Ovm Threading subsystem. Ovm uses user-level threading. Multiple Java
threads are mapped onto one operating system thread. Threads are implemented
by contexts which are scheduled and preempted under VM control. Asynchronous
event processing, such as timer interrupts and I/O completion is implemented
by the means of compiler inserted poll checks. A poll check is simply a function
call guarded by a branch on the value of a global variable. Our current poll check
insertion strategy leads to less than 2.5% overhead. Studies we have done with a
real-time application show that the latency between the arrival of an event and
the execution of a poll check tends to be under 6µs. For a detailed description
of these results the reader is referred to [4].

We leverage poll checks in our implementation of memory management. Con-
text switches only occur at poll checks and a small well-understood set of sched-
uler actions. The garbage collector can only run while a thread is blocked at a
poll check, calling the memory allocator or invoking a scheduler operation. This
makes for a simple definition of garbage collection safe points: in Ovm the only
safe points are method calls and poll checks.

3 Previous Work: Accurate Stack Scanning

While it is often possible to assume that heap-allocated data structures have
accurate type-descriptors that can be use by the garbage collector. However,
while the native C/C++ compiler knows which locations in the call stacks con-
tain pointers and which don’t, but this knowledge is normally lost once the
executable has been produced.

We found two previously used techniques for accurately scanning C call
stacks. The simpler of the two uses an explicit stack of live pointers. The other
approach, presented by Henderson [8], involves building a linked list of frames
that contain pointers. This section describes both techniques in detail.

Explicit Pointer Stacks. While a C compiler is free to lay out local variables
however it wants, it has less freedom when dealing with objects in the heap.
When generating C code, a language translator can choose to emit code that
will store all pointers in an array that is at a known location and has a fixed
layout. We call this array an explicit pointer stack. Consider Fig. 1(a), where a
function allocates an object, stores a pointer to it in a local variable, and then
calls a second function passing the pointer as an argument. Fig. 1(b) illustrates
the same function using an explicit pointer stack. The code uses a global pointer
to the topmost element of the stack, PtrStackTop. The prologue of the function
increments the stack top by the number of pointer variables used in the function
(one in this case), and the epilogue decrements it by an equal quantity. References
are then stored in the reserved stack slots.



void Foo(void) {
void *ptr = AllocObject();
Bar(ptr);
...

}

(a) Generated C code

static void **PtrStackTop;
void Foo(void) {

// allocate stack slot for the pointer
PtrStackTop++;
PtrStackTop[-1] = AllocObject();
Bar(PtrStackTop[-1]);
...
// relinquish stack slot
PtrStackTop--;

}

(b) Explicit pointer stack

struct PtrFrame {
PtrFrame *next;
unsigned len;

}
static PtrFrame *PtrTop;
void Foo(void) {

// describe this frame
struct Frame: PtrFrame {

void *ptr;
}
Frame f;
f.len = 1;
f.next = PtrTop;
PtrTop = &f;
f.ptr = AllocObject();
Bar(f.ptr);
...
// pop the stack
PtrTop = f.next;

}

(c) Henderson’s linked
lists

Fig. 1. Example of previous techniques for accurate stack traversal in C++ code.
In (a), we see the original code. In (b) and (c) we see the same code converted to
use explicit pointer stacks and Henderson’s linked frames.

Henderson’s Linked Frames. Henderson proposed a different approach, taking
advantage of the fact that in C a local variable’s address may either be passed
to another function or stored in the heap. A C or C++ compiler handles these
variables specially, to ensure that changes made through these external references
are visible locally. Fig. 1(c) illustrates Henderson’s technique. The PtrFrame data
structure is used to build a linked list of frames which hold live pointers. The
translator emits a function prologue that declares a frame with sufficient space
to hold all the pointers (just one in our example). places The frame is placed
into a linked list which can be subsequently traversed by the garbage collector.

Both techniques pin local variables into specific memory location that can-
not easily be optimized by the C/C++ compiler. In the absence of good alias
analysis, any write to a pointer variable will invalidate previous reads of all
other pointer variables. Hence, the effectiveness of optimizations such as register
allocator is limited, as pointers can not be moved around or stored in register.

4 Accuracy with Lazy Pointer Stacks

The key to accurately obtaining references in the call stack is to force the com-
piler to place references in specific locations, which the approaches above do
by segregating references to an explicit pointer stack or, in Henderson’s case,



to a linked frame structure. Both approaches are eager in the sense that the
data structures describing live pointers are always up-to-date. We investigate
here techniques that constructs the equivalent of a pointer stack on demand. We
refer to this approach as lazy pointer stacks.

The goal of a lazy pointer stack algorithm is to produce at any GC safe point
a list of all references on the call stack of each thread. We shall assume that safe
points are associated to call sites, de facto the case in Ovm as GCs are triggered
by calls to the memory allocator. Other granularities are however possible.

For every safe point, the language trans-
void Foo(void) {

void *ptr = AllocObject();
Bar(ptr);
if (save()) {

lazyPointerStack->pushFrame(1);
lazyPointerStack->pushPtr(ptr);
return;

}
...

}

Fig. 2. Lazy pointer stack construc-
tion: generated C++ code.

lator has a set of reference variables. that
may be live. Each safe point is followed
by a guarded sequence that saves all the
live references and simply returns, as in
Fig. 2. When a stack needs to be scanned,
we arrange for the guard to evaluate to
true and return from the topmost frame.
The call stack then unwinds saving all
references in the process. Once all point-
ers are saved to the lazy stack, the GC
can use this data to work accurately.

After unwinding the stack, we restore
the thread to its initial state; specifically we restore the C++ call stack and the
register file. If we are unwinding a thread we just context-switched to, we already
have a copy of the register file, otherwise, we save it using setjmp. To be able to
restore the stack, we simply save the original C++ call stack before unwinding
and replace the unwound stack with its copy afterwards.

This simple strategy is all that is
void Foo(void) {

void *ptr = AllocObject();
Bar(ptr);
if (save()) {

lazyPointerStack->pushFrame(1);
lazyPointerStack->pushPtr(ptr);
return;

} else if (restore()) {
ptr = lazyPointerStack->popPtr();
lazyPointerStack->popFrame();

}
...

}

Fig. 3. Prototype of lazy pointer stack
with frame counting guard: generated
C code.

needed if the garbage collector does not
move objects. Supporting a moving col-
lector, however, requires the ability to
update the pointers contained in local
variables. We developed two original so-
lutions for this purpose: pointer frame
counting, and the safe point catch and
thunk.

4.1 Pointer Frame Counting

Updating pointers held in local vari-
ables can also be done lazily, as in Fig. 3.
After collection, when each thread re-
sumes execution, we cause each frame
to perform pointer restoration as control returns to it, thanks to an additional
post-safe-point guard which retrieves the possibly updated pointers. So, when
the garbage collector runs, the pointers stored in the lazy pointer stack structure
are used and modified. When the collector yields back to the application threads,
the pointers are automatically restored from the pointer stack, frame by frame.



// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .

height++;
functionCall();
height--;
if (save()) {

if (height < auxHeight) {
stop unwinding, restore the stack;

} else {
lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
return;

}
} else if (height < auxHeight) {

ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .
lazyPointerStack->popFrame();
auxHeight--;

}

(a) Function call with pointer frame
counting

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .;

try {
functionCall();

} catch (const StackScanException&) {
if (save()) {

lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
throw;

} else {
ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .
lazyPointerStack->popFrame();
if (had application exception) {

throw application exception
} else {

retrieve return values
}

}
}

(b) Function call, safe point catch and
thunk

Fig. 4. Lazy pointer stack techniques.

The restoration logic has two key aspects. First, restore() must only eval-
uate to true the first time we return to a frame after a collection, which may
happen immediately after the collection, or later. Second, a thread may return to
a frame only after several collections have occurred. This complicates the stack
unwinding procedure.If at the time of a stack scanning request it is found that
a frame has not been active since before a previous garbage collection, then the
pointers in that frame are no longer valid, and the collector should not use that
frame’s pointers as roots but rather reuse the pointers in its lazy pointer stack.

We illustrate these issues in the following example. The program is composed
of four method M,A,B, C, and G, which is the invocation of the memory allo-
cator which triggers garbage collection. A frame is said to be dirty if it contains
references to objects that were not updated after a collection (these reference
are stale if the objects were moved). We denote a dirty frame using bold face.

(a) [M ] The main function.
(b) [M→A→B] M calls A, which then calls B.
(c) [M→A→B→G] B requests memory and triggers a collection.
(d) [M→A→B→G] The stack is scanned and restored.
(e) [M → A → B → G] The garbage collector runs, potentially moving objects

referenced from the stack. All frames below that of the garbage collector are
now dirty as they contain pointers to the old locations of objects.

(f) [M→A→B] We return to a dirty frame, B, and must restore pointers.



(g) [M→A→B] Execution proceeds in a clean frame.

(h) [M→A→B→C] Call into C.

(i) [M→A→B] Return to B. Because it is clean, we do not restore pointers.

(j) [M→A→B→G] Consider what happens if B triggers another collection.

(k) [M→A→B→G] The stack is scanned only as far as B, since frames below
it contain contain old, now invalid, pointers.



We see that there is a frontier between dirty and clean frames. For dirty
frames, the lazy pointer stack has correct pointers. For clean frames, the lazy
pointer stack has no information. The pointer frame counting technique for accu-
rate stack scanning is shown in Fig. 4(a). We keep track of the frontier between
dirty frames and clean frames by using two counters: height is the height of the
stack below the current frame; auxHeight is the height of the lazy pointer stack
managed by the garbage collector, and it keeps track of the frontier between
dirty and clean frames. We only restore pointers in a frame when the height
becomes smaller than auxHeight. After stack scanning, the collector resets the
height to its previous value, and auxHeight to the same value as height.

Non-local returns can interfere with
unsigned savedHeight = height;
. . .
try {

. . .
} catch (const ApplicationException&) {

// restore counts
height = savedHeight;
while (height < auxHeight-1) {

// ignore pointers in frame
lazyPointerStack->popFrame();
auxHeight--;

}
if (height < auxHeight) {

ptr = lazyPointerStack->popPtr();
lazyPointerStack->popFrame();
auxHeight--;

}
// handle application exception
. . .

}

Fig. 5. Compiling try blocks to re-
store the pointer frame counts.

this scheme. In our case the language
translator uses C++ exceptions, so we
have to handle them appropriately, pro-
viding a way to maintain the correct
value of height. The solution is to com-
pile try blocks as shown in Fig. 5. Be-
fore entry into the try block we save
the value of height, and we restore it
when an exception is caught. Because
the exception may have traversed mul-
tiple dirty frames, we need to pop those
from the lazy pointer stack. This is the
purpose of the while loop. Finally, we
check if the current frame is dirty; if
so, we restore the pointers.

This gives us a complete system,
with all the features necessary to accu-
rately scan the stack and find pointers.
However, this solution still has some
overheads. In particular, it is necessary to execute code that counts the stack
height before and after each function call.

4.2 Safe Point Catch and Thunk
On most systems, enclosing a group of instructions in a try/catch block does
not require any additional code to be executed when no exceptions are thrown.
The fast path has virtually no overhead. Instead of using a costly conditional to
protect entry to the save and restore sequences, therefore, we can obtain better
performance by implementing the accurate pointer guard using C++ exceptions.

To scan the stack, we simply throw a distinguished StackScanException.
That exception is caught by the catch block in Fig. 4(b) and, if the save()
predicate is set, the pointers in the receiver frame are saved. The exception
propagates until all pointers are saved. During the traversal, for every dirty
frame we install a helper routine, a thunk, by modifying the return address in
the C++ call stack. After GC, whenever control would return to a function with
a dirty frame, the thunk runs instead, throwing again a StackScanException.
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Fig. 6. Installing thunks in a C++ call stack.

That causes the pointers in the corresponding frame to be restored before normal
execution resumes. At all times, thunks delimit the frontier between clean and
dirty frames. This approach is illustrated in Fig. 4(b).

Thunks are invoked on both normal and exceptional returns. During the
normal return sequence, the ordinary return sequence of the target frame results
in the thunk being called. Fig. 6 shows this process. During exceptional returns,
the C++ runtime unwinds the stack using the return PCs to determine if a
frame is able to handle exceptions of a given type. We replace the return PC
with the address of our thunk; therefore, we simply have to enclose the entry
point of our thunk within a suitable exception handler. As a result, the thunk
also automatically runs as a result of exceptional returns as well.

The thunk algorithm is shown in
void thunk() {

if (unwinding stack) {
stop unwinding, restore the stack

} else {
if (target frame threw exception) {

save exception
} else {

save return values
}
restore proper return PC
throw StackScanException;

}
}

Fig. 7. Thunk algorithm.

Fig. 7. If we are unwinding the stack
in preparation for GC, it means we hit
the frontier between clean and dirty
frames. We stop (all pointers have been
copied), restore the original stack, and
proceed with GC. Otherwise, we save
the current exception or the value re-
turned by the routine from which we
were returning when control was as-
sumed by the thunk, we restore the
original return PC, and throw a Stack-
ScanException, triggering the pointer
restoration code in Fig. 4(b) and the

retrieval of the original saved exception or return value. Although thunks do
incur some execution overhead, they are only installed for the stack frames seen
at the time of a garbage collection, and run once per frame. Hence, the thunk
overhead is in any case bounded by the stack height at the time of the collection.

4.3 Practical Considerations

Henderson [8] argues that his approach is fully portable as it uses only standard
C. The same holds for explicit pointer stacks. Our approach uses some platform-



specific knowledge in order to save and restore the stack. The safe point catch and
thunk technique also requires some knowledge of the C++ calling convention.
While the implementation of thunks does require some platform specific code,
we argue that the such dependencies are small. The platform specific code in
our thunking implementation amounts to just 30 lines of code, supporting both
IA32 and PPC architectures.

5 Compiler Optimizations

We have described four methods for accurate stack scanning: explicit pointer
stacks and Henderson’s frame lists, and two new techniques, frame counting and
catch & thunk. All four have been implemented in the Ovm virtual machine.
We found that the overheads imposed by those techniques can be reduced by
carefully applying a number of optimization strategies.

General Optimizations. The adoption of certain optimization techniques proved
to have a positive effect on the performance of both eager and lazy stack scanning
techniques. Inlining at the bytecode level, within our compiler, produced smaller
code than relying exclusively on the GCC inliner, as we can rely on a higher-level
knowledge of the program structure. Method devirtualization is more effective
after bytecode inlining, as our analysis can rely on additional context. Refining
our liveness analysis also proved beneficial. By reducing as much as possible the
set of variables known to be live at each call site, we can both reduce the size of
the added code, and improve the efficiency of the garbage collector at runtime.

Fine Tuning Further optimizations, specifically concerning our new techniques,
also proved very valuable. When lazy pointer stacks are used, we treat safe points
where no pointers are live as a special case. With catch & thunk, a function call
with no live pointers does not require a try/catch block at all. In the pointer
frame counting approach, empty safe points just require a simple guard, as show
in below. In SPECjvm, 26% of all safe points are empty.

If no variables are live across any safe point in a method, that method can
avoid using the pointer stack entirely. Because we only emit poll checks on back-
ward branches, many methods fall into this category (roughly 34% of all methods
after bytecode inlining). Certain function calls do not need a guard even if point-
ers are live at the call. This includes function calls that are known not to return
normally, for which the set of exceptions thrown is known, and whose excep-
tions are not caught locally. We currently use this optimization at array bounds
checks, explicit type checks, and implicit type checks when writing to an array of
object references. Only 5% of our runtime checks include non-empty safe points.
In certain cases, we can also coalesce multiple exception handlers within each
method. That allows us to further contain the code size overhead.

6 Experimental Evaluation

Our experimental evaluation was performed on a Pentium 4 machine at 1600
MHz, 512 MB of RAM, running Linux 2.6 in single-user mode. All results are
based on the SPECjvm98[9] benchmark suite. The results reported here are



(a) 256MB heap

(b) 32 MB heap

Fig. 8. Overhead of accurate collection. Median of 60 runs, with Ovm and byte-
code inlining. Results normalized with respect to the Ovm Conservative collector. The
numbers represented in the graphs are shown in Fig. 9.



Median of Execution
time in seconds -

(Overhead relative to
Conservative)

Thunking Counter PtrStack Henderson

201_compress 1.69% 3.26% 4.61% 1.60%

202_jess 3.33% 14.99% 19.73% 19.65%

209_db 1.13% 4.69% 5.33% 4.92%

213_javac 7.61% 12.98% 7.01% 9.22%

222_mpegaudio 0.91% 5.68% 9.64% 4.37%

227_mtrt 0.88% 10.26% 6.00% 6.42%

228_jack 6.57% 7.72% 4.68% 7.77%

Geometric Mean 3.13% 8.44% 8.03% 7.58%

Median of Execution time in seconds - Spec JVM 98 Benchmark vs. Ovm
Configuration - Ovm inlining, 65000 vars, copy propagation, Heap Size: 256m,

Compiler: gcc-4.0.2, 60 runs - (Overhead relative to Conservative)

(a) 256MB heap

Median of Execution
time in seconds -

(Overhead relative to
Conservative)

Thunking Counter PtrStack Henderson

201_compress 2.21% 2.79% 6.17% 1.59%

202_jess 10.86% 21.82% 24.66% 27.14%

209_db 1.51% 3.51% 3.66% 4.00%

213_javac -6.05% -1.78% -2.24% 1.45%

222_mpegaudio 0.39% 5.95% 9.23% 4.23%

227_mtrt -17.21% -8.50% -11.08% -11.31%

228_jack 7.41% 9.04% 6.76% 6.51%

Geometric Mean -0.51% 4.33% 4.83% 4.29%

Median of Execution time in seconds - Spec JVM 98 Benchmark vs. Ovm
Configuration - Ovm inlining, 65000 vars, copy propagation, Heap Size: 32m,

Compiler: gcc-4.0.2, 60 runs - (Overhead relative to Conservative)

(b) 32 MB heap

Fig. 9. Percent overhead of accurate garbage collection in Ovm. The overhead of ac-
curate stack walking when using the safe point catch and thunk is only 3% for a large
heap. For a small heaps, safe point catch and thunk actually improves performance,
due to the conservative collector retaining too many objects.

Median of Execution
time in seconds Conservative Thunking Counter PtrStack Henderson

201_compress 16.478 16.756 17.016 17.238 16.742

202_jess 5.187 5.360 5.964 6.210 6.206

209_db 18.468 18.677 19.334 19.452 19.378

213_javac 12.747 13.718 14.402 13.641 13.922

222_mpegaudio 12.007 12.116 12.690 13.165 12.532

227_mtrt 5.067 5.112 5.587 5.372 5.393

228_jack 14.394 15.340 15.505 15.068 15.513

Median of Execution time in seconds - Spec JVM 98 Benchmark vs. Ovm Configuration - Ovm
inlining, 65000 vars, copy propagation, Heap Size: 256m, Compiler: gcc-4.0.2, 60 runs

(a) 256MB heap

Median of Execution
time in seconds Conservative Thunking Counter PtrStack Henderson

201_compress 16.439 16.803 16.897 17.453 16.700

202_jess 4.937 5.473 6.014 6.154 6.277

209_db 30.172 30.628 31.231 31.277 31.379

213_javac 18.202 17.100 17.877 17.793 18.466

222_mpegaudio 12.047 12.094 12.764 13.160 12.557

227_mtrt 7.003 5.799 6.408 6.227 6.211

228_jack 14.253 15.310 15.541 15.217 15.181

Median of Execution time in seconds - Spec JVM 98 Benchmark vs. Ovm Configuration - Ovm
inlining, 65000 vars, copy propagation, Heap Size: 32m, Compiler: gcc-4.0.2, 60 runs

(b) 32 MB heap

Fig. 10. Execution time in seconds of SpecJVM benchmarks on Ovm. The correspond-
ing overheads, relative to the conservative collector, are shown in Fig. 9.

the median of sixty individual runs of tests from the SPECjvm98[9] benchmark
suite (a first batch of ten, plus an additional fifty). We have run all the tests
with both a large heap (256 MB) and a small heap (32 MB). We use Ovm’s
most reliable production garbage collector, called mostlyCopying, which has two
operational modes. When accurate information is available it behaves as a tra-
ditional semi-space collector. Otherwise it runs in ‘conservative’ mode and pins
pages referenced from the stack.

Overhead of Accurate Techniques. Figure 8(a) shows the percent overhead of
using the four accurate stack scanning techniques with a large heap (256MB).
catch & thunk is significantly better than other techniques. It has a geometric
mean overhead of 3% over a conservative collector, while the others are no bet-
ter than 7%. In large heap configurations, many of the SPECjvm98 benchmarks
only collect when the benchmark asks for it directly using System.gc(). Hence,
results using the large heap configurations place more emphasis on the mutator
overheads of the stack scanning techniques. We also look at smaller heap config-
urations, which place more emphasis on the cost of stack scanning and collection
time. Results using small heaps are shown in Fig. 8(b).



Time Spent in GC. Sometimes thunking can lead to a speed up, as our garbage
collector can work more efficiently if accurate pointer information is available. We
profiled the time spent in the garbage collector, and verified that the time used
for GC in javac and mtrt is shorter in the accurate configuration, consistently
with the speed-ups shown in Fig. 8(b).

Comparing VMs. Our goal in implementing Ovm was to deliver a competitive
Java implementation. We compare Ovm and stack walking configurations (con-
servative and thunking) against HotSpot Client and Server version 1.5, and GCJ
version 4.0.2, with a 256 MB heap. Fig. 12 shows the results. Ovm’s performance
is highly competitive with that of the other systems, therefore our overhead re-
sults are likely not to be due to implementation inefficiencies.

Conservative 3,376

Explicit Pointer Stack 3,857

Henderson 4,031

Counter 9,320

Thunking 11,081

Fig. 11. Code Size in KB.

Code Size. All accurate techniques increase code
size. In the case of Ovm with j2c we can measure
the code component of the Ovm executable im-
age. Fig. 11 shows the image sizes in KBytes for
the SPEC benchmark executable image (includes
the application as well as the VM code, and ap-
proximately 30MB of data.)

6.1 Understanding the Overheads

We used gprof[10] to obtain profiling information for the javac benchmark in
both the conservative and catch and thunk configurations, and found three main
sources of overhead in these methods.

Exception Dispatch Code. Up to two call-preserving registers may be used by
exception dispatch code generated by GCC. This appears to be the dominant

Fig. 12. Comparing Virtual Machines. 256MB heap, median of 60 runs. Com-
paring two Ovm configurations (conservative and thunking) with HotSpot Client 1.5,
HotSpot Server 1.5 and GCJ 4.0.2.



cost in ScannerInputStream.read, where the presence of catch and thunk code
spills a loop induction variable from %edi. The generated code is significantly
more complicated where two or more exception handlers are nested.
Extra Assignments of Return Values. We replace method calls with wrapper
macros that add our lazy stack walking code. Those macros may lead to extra
assignments of return values. When a method produces a value, the safe point
code serves as the right-hand side of an assignment expression. The return value
is saved in a macro-generated variable and returned to the macro’s caller using
GCC’s statement-in-expression syntax. These extra assignments invariably re-
main after GCC’s optimization, but are usually simple register-to-register moves.
However, in Scanner.xscan, these extra variables and assignments do result in
additional variables being spilled to the stack, leading to a marked slowdown
(about 40%). It should be possible to eliminate this overhead by treating an
assignment expression whose right-hand-side is a method call as a safe point,
thus moving the real assignment inside the safe point try block.
Code Motion Across Exception Handlers. Code motion across exception handlers
is sometimes less profitable than it would be in the absence of exception handlers.
GCC occasionaly performs extra work to ensure that variables that are not used
by safe point code are available inside the safe point catch clause.

7 Validation: Real-time Garbage Collection

One of our goals in starting this project was to support real-time garbage col-
lection (RTGC) in the real-time configuration of Ovm. While it is reasonable to
think that lazy pointer stacks are able to deliver both the level performance and
predictability needed in a real-time GC, it is difficult to have confidence in such a
claim without an actual implementation. We therefore implemented a real-time
garbage collector within Ovm using the lazy pointer stack technique [11]. The
success in this endeavor increased our confidence in the general applicability of
the techniques introduced here.

The Ovm real-time collector is a mark-sweep snapshot-at-the-beginning non-
copying incremental garbage collector. The collector, just as the rest of the VM,
is written in Java. We thus used features of the Real-time Specification for Java
in the implementation. The collector thread is a real-time Java thread with a
priority high enough that, unless it yields, it will not be interrupted by applica-
tion threads. When memory usage increases beyond a user-specified threshold,
the collector thread is scheduled. Because of its priority, it immediately preempts
any application threads. It then accurately scans the stack, the Ovm boot im-
age, which contains immortal objects used by the VM, and then incrementally
traverses the heap reclaiming unused objects. Accurate stack scanning takes less
than 250µs for the mtrt benchmark, and the maximum collector pause time for
this benchmark is 1.022ms. Further details on our real-time collector are in [11].

8 Related Work

Language implementations that use a C or C++ compiler as a back-end have
a choice between conservative collection and the accurate techniques presented



here. Techniques for accurate stack scanning in uncooperative environments have
been previously described in detail in [14, 8]. Popular techniques for conservative
garbage collection include the Boehm-Weiser collector[2] and various incarna-
tions of mostly-copying collectors[15–17].

JamaicaVM uses explicit pointer stacks [14], but they differ from our imple-
mentation. First, objects referenced from the stack cannot move (in Ovm they
can). Second, JamaicaVM uses write barriers on the pointer stack to enable in-
cremental stack scanning. Ovm uses stop-the-world stack scanning. JamaicaVM
may choose to place pointers on the pointer stack at safe points rather than
upon each write. However, our lazy pointer stacks go further, only saving point-
ers when a stack scanning is actually requested, and additionally allowing for
objects referenced by pointers on the stack to be moved.

The motivation behind generating C or C++ code is to create a compet-
itive, portable language implementation with minimal effort. Jones, Ramsey,
and Reig[18, 19] point out that what is really needed is a portable assembly
language. They propose C--, which has a structured C-like syntax and comes
complete with a runtime system that supports accurate garbage collection. C--
is attractive, but its stage of development cannot compete with GCC, especially
for implementations of languages that map nicely onto C++, and where either
conservative collection is acceptable, or the accurate stack walking techniques
within this work are applicable. The Quick C-- compiler currently only supports
IA32, while Ovm is available on IA32, PPC, and ARM. Using GCC allows us to
generate fast code on each of these architectures.

It possible to modify, with some effort, the GCC compiler to support accurate
garbage collection. Diwan, Moss, and Hudson [20] describe changes to GCC
version 2.0 to support accurate garbage collection in Modula-3. A further effort
in this area is described in [21]. Our work has the advantage of not being strictly
specific to GCC; the techniques described in this paper can be used with any
compiler that has a reasonable binary interface for exceptions.

9 Conclusions

We have extended the state of the art for accurate garbage collection in un-
cooperative environments. The lazy pointer stacks technique shows less than
10% overhead in any given benchmark, and 3% overhead overall. Further, we
demonstrated the need for optimizations such as inlining to be implemented in
the high-level compiler for accurate garbage collection to pay off. To our knowl-
edge, our experimental evaluation is the first to compare multiple approaches
to accurate stack scanning within the same system. Of the previously known
techniques, we Henderson’s approach fared the best in our tests; however, it
showed more than twice the overhead of our new strategy. We claim therefore
that our new approach improves the viability of accurate garbage collection in
uncooperative environments and makes it easier for language implementors to
use C++ as portable low-level representation.
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