
Secure Composition of Insecure Components

Peter Sewell

Computer Laboratory,

University of Cambridge,

England

Peter.Sewell@cl.cam.ac.uk

Jan Vitek

Object Systems Group,

Université de Genève,

Switzerland

Jan.Vitek@cui.unige.ch

May 20, 1999

Abstract

Software systems are becoming heterogeneous: instead of a small number of
large programs from well-established sources, a user’s desktop may now consist of
many smaller components that interact in intricate ways. Some components will be
downloaded from the network from sources that are only partially trusted. A user
would like to know that a number of security properties hold, e.g. that personal data
is not leaked to the net, but it is typically infeasible to verify that such components
are well-behaved. Instead, they must be executed in a secure environment, or
wrapper, that provides fine-grain control of the allowable interactions between them,
and between components and other system resources.

In this paper we study such wrappers, focusing on how they can be expressed in
a way that enables their security properties to be stated and proved rigorously. We
introduce a model programming language, the box-π calculus, that supports com-
position of software components and the enforcement of security policies. Several
example wrappers are expressed using the calculus; we explore the delicate security
properties they guarantee.

Contents
1 Introduction 2

2 A Boxed π Calculus 4

2.1 Syntax . 5

2.2 Reduction . 6

2.3 Labelled Transitions . 7

2.4 Bisimulation . 9

3 Security Wrappers 9

4 Honesty and Composition 11

4.1 Honesty for Binary Wrappers . 13

5 Constrained Interaction Between Components 14

5.1 New-name directionality . 14

5.2 Permutation . 14

5.3 Coloured Reductions . 15

6 Conclusion 17

6.1 Related Work . 17

6.2 Future Directions . 18

A Coincidence of the Two Semantics 20

B Other Proofs 37

1

1 Introduction

Software systems are evolving. Increasingly, monolithic applications are being replaced
with assemblages of software components coming from different sources. Instead of a
small number of large programs from well-established suppliers, nowadays a user’s desk-
top is made up of many smaller applications and software modules that interact in
intricate ways to carry out a variety of information processing tasks. Moreover, whereas
it used to be that a software base was fairly static and often controlled by a system
administrator, it is now easy to download code from the network; technologies such as
Java even allow an application program to be extended with new components while the
program is running.

In such fluid operating environments, traditional security mechanisms and policies
appear almost irrelevant. While passwords and access control mechanisms are ade-
quate to protect the integrity of the computer system as whole, they utterly fail to
address the issue of protecting the user from downloaded code being run from her ac-
count [IAJR97, GWTB96, NL98]. Approaches such as the Java sandbox that promise
security by isolation are not satisfactory either: components can interact freely or not
at all [VB99, Gon97]. What is needed is much finer-grained protection mechanisms that
take into account the interconnection of software components and the specific security
requirements of individual users.

We give a small motivating example (based on a true story) involving a fictional
character, Karen, performing some financial computation. To manage her accounts she
downloads a software package called Quickest from a company Q. Karen does not want
any information about her to be leaked without her consent, so she would like to run
Quickest in an environment that does not allow it access to the Internet (she has observed
that it sometimes uploads information – presumably for marketing purposes – to Q). On
the other hand she often needs stock quotes, for which she must allow net access. At
present she runs two instances of Quickest, one on an isolated PC, with her financial
records, and one connected, used to obtain stock quotes. She transfers data from the
second to the first only on floppy disc, thereby manually ensuring that no information
flows in the converse direction.

Karen would like to dispose of the isolated PC, using a software solution to prevent
her personal data being leaked to the net. Now, Quickest is a large piece of commercial
software that was not programmed by Karen. The source code is not available to her
and its internal behaviour is complex and inaccessible; ensuring the desired properties by
program analysis will not be feasible. Instead she must run the two copies of the package
in secure software environments that allow control of the information flow between them
and between each package and the net.

More generally, she will wish to run many packages, each trusted in different ways, and
will want to be able to dynamically control the interactions between them and between
these packages and other resources – the net, regions of the local disc, the terminal, audio
and video capture devices etc. In some cases she will wish to log the data sent from one
to another; in others she will wish to limit the allowed bandwidth (e.g. to disallow audio
and video channels). In general her notion of what data is to be considered “sensitive” is
likely to be context dependent. In a Web browser, she may choose to consider her e-mail
address as a secret that should be protected from broadcast to junk mail lists, while the
same e-mail will not be treated specially in her text editor.

While it is not feasible to analyse or modify large third-party software packages, it is
possible to intercept the communications between a package and the other parts of the
system, interposing code at the boundaries of the different software components [Jon99,
FHL+96, BTS+98, GWTB96]. It is thus possible to monitor or control the operations

2

that these components are able to invoke, and the data that is exchanged between them.
We call a code fragment that encapsulates untrusted components a security wrapper or
wrapper for short.

Clearly the task of writing wrappers should not be left solely to the end-user. Rather
we envision wrappers as reusable software components, users should then only have to
pick the most appropriate wrappers, customize them with some parameters and install
them. All of this process should be dynamic: wrappers must be no harder to add to
a running system than new applications. A user will require a clear description of the
security properties that a wrapper guarantees. Moreover, wrappers should compose with
a clear notion of which properties are preserved.

The goal of this work is to study such secure environments, focusing on how they
can be expressed in a way that enables their security properties to be stated and proved
rigorously. It appears that there is a wide range of rather delicate properties, making
hard for designers to develop sufficiently clear intuitions without such rigour. Moreover
the wrappers, although critical, may be rather small pieces of software, making it feasible
to prove properties about them, or about mild idealisations.

To express and reason about wrappers we require a small programming language,
with a well-defined semantics, that allows the composition of software components to be
expressed straightforwardly and also supports the enforcement of security policies. Such
a language, the box-π calculus, is introduced in §2. We begin with a simple example,
a wrapper W1 written in the calculus. It encapsulates a single component and controls
its interactions with the environment, limiting them to two channels in and out . W1 is
written as a unary context:

W1[]
def
= (ν a)

(

a[]

| ! in↑y.in
a
y

| ! outay.out
↑
y
)

This creates a box with a new name a, installing in parallel with it two forwarders –
one that receives messages from the environment on channel in and sends them to the
wrapped program, and one that receives messages from the wrapped program on channel
out and sends them to the environment. An arbitrary program P (possibly malicious) can
be wrapped to give W1[P]; the design of the calculus and of W1 ensures that no matter
how P behaves the wrapped program W1[P] can only interact with its environment on
the two channels in and out . This could be achieved simply by forbidding all interaction
between P and the outside world, a rather unsatisfactory wrapper — W1 is also honest,
in that it faithfully forwards messages on in and out . These informal properties are made
precise in Propositions 2 and 5 below. We also discuss the sense in which wrapping a
well-behaved P has no effect on its behaviour. W1 is atypical in that it has no behaviour
except the forwarding of legitimate messages – other reasonable unary wrappers may
perform some kind of logging, or have a control interface for the wrapper. The honesty
property that should hold for any reasonable wrapper is therefore somewhat delicate; to
state it (and our other security properties) we make extensive use of a labelled transition
semantics for the calculus.

The wrapper W1 controls interaction between a single component and its environ-
ment. Our second main example goes further towards solving Karen’s problem, allowing
control of the interaction between components. W2 (defined in §3) is a binary wrapper
that encapsulates two components P and Q as W2[P, Q], allowing each to interact with
the environment in a limited way but also allowing information to flow from P to Q
(but not vice versa) along a directed communication channel. Making this precise is the
subject of §5.

3

Both W1 and W2 are chosen to be as simple as possible, in particular with fixed inter-
faces for components to interact with each other and with the environment. Generalising
this to arbitrary interfaces and to wrappers taking any number of components should be
straightforward but complicates the notation; other generalisations are discussed in the
conclusion.

Overview We begin in the next section (§2) by introducing the calculus and giving
its operational semantics. A number of wrappers are defined in §3, including one which
logs traffic. The basic properties of honesty and well-behaviour are introduced in §4.
Information flows between wrapped components are studied in §5, then we conclude in
§6 with discussion of related and future work. This paper describes work in progress –
Sections 4 and 5 contain a number of conjectures which are yet to be proved, but which
we hope will stimulate discussion. This technical report is an extended version of a paper
appearing in the Computer Security Foundations Workshop (CSFW-99).

2 A Boxed π Calculus

The language – known as the box-π calculus – that we use for studying encapsulation
properties must allow interacting components to be composed. The components will
typically be executing concurrently, introducing nondeterminism. It is therefore natural
to base the language on a process calculus. The box-π calculus lies in a large design
space of distributed calculi that build on the π-calculus of Milner, Parrow and Walker
[MPW92]. Related calculi have been used by a number of authors, e.g. in [AFG98,
Ama97, AP94, CG98, CG99, FGL+96, HR98c, HR98b, RH98, Sew97, Sew98, SWP98a,
SWP98b, VC98, VC99]. A brief overview of the design space can be found in [Sew99];
here we highlight the main design choices for box-π, deferring comparison with related
work to §6.

The calculus is based on asynchronous message passing, with components interacting
only by the exchange of unordered asynchronous messages. Box-π has an asynchronous
π-calculus as a subcalculus – we build on a large body of work studying such calculi,
notably [HT91, Bou92, ACS96]. They are known to be very expressive, supporting many
programming idioms including functions and objects, and are Turing-complete; a box-π
process may therefore perform arbitrary internal computation.

To π we must add primitives for constraining communication – in standard π-calculi,
if one process can send a message to another then the only way to prevent information
flowing in the reverse direction is to impose a type system, which (as observed above)
is not appropriate here. We therefore add a boxing primitive. Boxes may be nested,
giving hierarchical protection domains; communication across box boundaries is strictly
limited. Underlying the calculus design is the principle that each box should be able to
control all interactions of its children, both with the outside world and with each other
[VC98]. Communication is therefore allowed only between a box and its parent, or within
the process running in a particular box. In particular, two sibling boxes cannot interact
without the assistance of their parent. To enable a box to interact with a particular
child, boxes are named, analogously to π channel names. The security properties of our
wrappers depend on the ability to create fresh box names.

Turning to the values that may be communicated, it is convenient to allow arbitrary
tuples of names (or other tuples). Note that we do not allow communication of process
terms. Moreover, no primitives for movement of boxes are provided. The calculus is
therefore entirely first order, which is important for the tractable theory of behaviour (the
labelled transition semantics) that we require to state and prove security properties. The

4

calculus is also untyped – we wish to consider the wrapping of ill-understood, probably
buggy and possibly malicious programs.

2.1 Syntax

The syntax of the calculus is as follows:

Names We take an infinite set N of names, ranged over by lower-case roman letters
n, m, x, y, z etc. (except i, j, k, o, p, u, v). Both boxes and communication channels are
named; names also play the role of variables, as in the π-calculus.

Values and Patterns Processes will interact by communicating values which are de-
constructed by pattern-matching upon reception. Values u, v can be names or tuples,
with patterns p correspondingly tuple-structured:

u, v ::= x name
〈v1 .. vk〉 tuple (k ≥ 0)

p ::= wildcard
x name pattern
(p1 .. pk) tuple pattern (k ≥ 0, no repeated names)

Processes The main syntactic category is that of processes, ranged over by P, Q. We
introduce the primitives in three groups.

Boxes A box n[P] has a name n, it can contain an arbitrary process P . Box names are
not necessarily unique – the process n[0] | n[0] consists of two distinct boxes named n,
both containing an empty process, in parallel.

P ::= n[P] box named n containing P
P | P ′ P and P ′ in parallel
0 the nil process
. . .

Communication The standard asynchronous π-calculus communication primitives are
xv, indicating an output of value v on the channel named x, and xp.P , a process that
will receive a value output on channel x, binding it to p in P . Here we refine these with
a tag indicating the direction of the communication in the box hierarchy. An input tag
ι can be either ⋆, for input within a box, ↑, for input from the parent box, or a name
n, for input from a sub-box named n. An output tag o can be any of these, similarly.
For technical reasons we must also allow an output tag to be ↑, indicating an output
received from the parent that has not yet interacted with an input, or n, indicating an
output received from child n that has not yet interacted. The communication primitives
are then

P ::= . . .
xov output v on channel x to o
xιp.P input on channel x from ι
!xιp.P replicated input
. . .

The replicated input !xιp.P behaves essentially as infinitely many copies of xιp.P in
parallel. This gives computational power, allowing e.g. recursion to be encoded simply,

5

while keeping the theory simple. In xιp.P and !xιp.P the names occurring in the pattern
p bind in P .

New name creation Both box and channel names can be created fresh, with the standard
π-calculus (ν x)P operator. This declares any free instances of x within P to be instances
of a globally fresh name.

P ::= . . .
(ν x)P new name creation

In (ν x)P the x binds in P . We work up to alpha conversion of bound names throughout,
writing the free name function, defined in the obvious way for values, tags and processes,
as fn().

2.2 Reduction

The simplest semantic definition of the calculus is a reduction semantics, a one-step
reduction relation P → P ′ indicating that P can perform one step of internal computation
to become P ′. We first define the complement ι of a tag ι in the obvious way, with ⋆ = ⋆
and ι = ι. We define a partial function { / }, taking a pattern and a value and giving,
where it is defined, a partial function from names to values.

{v/ } = {}

{v/x} = {x 7→ v}

{〈v1 .. vk′ 〉/(p1 .. pk)} = {v1/p1} ∪ . . . ∪ {vk/pk
} if these are defined and k = k′

undefined, otherwise

The natural definition of the application of a substitution σ (from names to values) to
a process term P , written σP , is also a partial operation, as the syntax does not allow
arbitrary values in all the places where free names can occur. We write {v/p}P for the
result of applying the substitution {v/p} to P . This may be undefined either because {v/p}
is undefined, or because {v/p} is a substitution but the application of that substitution to
P is undefined. Note that the result {y/x}P of applying a name-for-name substitution is
always defined. We define structural congruence ≡ as the least congruence relation such
that the axioms below hold. This allows the parts of a redex to be brought syntactically
adjacent.

P | 0 ≡ P (ν x)(ν y)P ≡ (ν y)(ν x)P
P | Q ≡ Q | P (ν x)(P | Q) ≡ P | (ν x)Q x 6∈ fn(P)

(P | Q) | R ≡ P | (Q | R) (ν x)n[P] ≡ n[(ν x)P] x 6= n

The reduction relation is now the least relation over processes satisfying the axioms and
rules below. The (Red Comm) and (Red Repl) axioms are subject to the condition that
{v/p}P is well-defined.

n[x↑v | Q] → xnv | n[Q] (Red Up)

xnv | n[Q] → n[x↑v | Q] (Red Down)

xιv | xιp.P → {v/p}P (Red Comm)

xιv | !xιp.P → !xιp.P | {v/p}P (Red Repl)

P → Q ⇒ P | R → Q | R (Red Par)

P → Q ⇒ (ν x)P → (ν x)Q (Red Res)

P → Q ⇒ n[P] → n[Q] (Red Box)

P ≡ P ′ → Q′ ≡ Q ⇒ P → Q (Red Struct)

6

The (Red Up) axiom allows an output to the parent of a box to cross the enclosing
box boundary. Similarly, the (Red Down) axiom allows an output to a child box n to
cross the boundary of n. The (Red Comm) axiom then allows synchronisation between a
complementary output and input within the same box. The (Red Repl) axiom is similar,
but preserves the replicated input in the resulting state.

Communications across box boundaries thus take two reduction steps, for example in
the following upwards and downwards communications.

n[x↑v] | xnp.P → n[0] | xnv | xnp.P
→ n[0] | {v/p}P

xnv | n[x↑p.P] → n[x↑v | x↑p.P]
→ n[{v/p}P]

This removes the need for 3-way synchronisations between a box, an output and an input
(as in [VC98]), simplifying both the semantics and the implementation model.

2.3 Labelled Transitions

The reduction semantics defines only the internal computation of processes. The state-
ments of our security properties must involve the interactions of processes with their
environments, requiring more structure: a labelled transition relation characterising the
potential inputs and outputs of a process. We give a labelled semantics for box-π in an
explicitly-indexed early style, defined inductively on process structure by an SOS. The
labels are

ℓ ::= τ internal action
xov output action
xγv input action

where γ ranges over all output tags except ↑. The labelled transitions can be divided
into those involved in moving messages across box boundaries and those involved in
communications between outputs and inputs. The movement labels are

xnv (sending to child n) xnv (box n receiving from its parent)
x↑v (sending to the parent)

Say mv(o) is true if o is of the form n or ↑. The communication labels are

x⋆v (local output) x⋆v (local input)
xnv (output received from child n) xnv (input a message received from child n)

x↑v (output received from parent) x↑v (input a message received from parent)

Labels will synchronise in the pairs given. The labelled transition relation has the form

A ⊢ P
ℓ

−→ Q

where A is a finite set of names and fn(P) ⊆ A; it should be read as ‘in a state where
the names A may be known to P and its environment, process P can do ℓ to become
Q’. The relation is defined as the smallest relation satisfying the rules in Figure 1. We
write A, x for A ∪ {x} where x is assumed not to be in A, and A, p for the union of
A and the names occurring in the pattern p, where these are assumed disjoint. For
the subcalculus without new-binding the labelled transition rules are straightforward —

7

xov
xov
−→ 0

(Out)

xιp.P
xιv
−→ {v/p}P

(In)

!xιp.P
xιv
−→ !xιp.P | {v/p}P

(Repl)

n[P]
xnv
−→ n[x↑v | P]

(Box-2) A ⊢ P
x↑v
−→ P ′

A ⊢ n[P]
τ

−→ (ν fn(x, v) − A)(xnv | n[P ′])
(Box-1)

P
τ

−→ P ′

n[P]
τ

−→ n[P ′]
(Box-3)

P
ℓ

−→ P ′

P | Q
ℓ

−→ P ′ | Q
(Par)

A ⊢ P
xγv
−→ P ′ A ⊢ Q

xγv
−→ Q′

A ⊢ P | Q
τ

−→ (ν fn(x, v) − A)(P ′ | Q′)
(Comm)

A, x ⊢ P
ℓ

−→ P ′

A ⊢ (ν x)P
ℓ

−→ (ν x)P ′
(Res-1)

A, x ⊢ P
yov
−→ P ′

A ⊢ (ν x)P
yov
−→ P ′

(Res-2)

P
ℓ

−→ P ′ P ′ ≡ P ′′

P
ℓ

−→ P ′′
(Struct Right)

The (Res-1) rule is subject to x 6∈ fn(ℓ), the (Res-2) rule is subject to x ∈ fn(v) −
fn(y, o) if ¬mv(o) and to x ∈ fn(y, v)− fn(o) otherwise. The indexing A ⊢ has beeen
elided in rules where it is not involved in any interesting way. In all rules with

conclusion of the form A ⊢ P
ℓ

−→ Q there is an implicit side condition fn(P) ⊆ A.
In the (In) and (Repl) axioms there is an implicit side condition that {v/p}P is
well-defined. Symmetric versions of (Par) and (Comm) are elided.

Figure 1: Box-π Labelled Transitions

instances of the reduction rule (Red Up) correspond to uses of (Box-1), (Out), and (Par);
instances of (Red Down) correspond to uses of (Comm), (Out), and (Box-2); instances
of (Red Comm) correspond to uses of (Comm), (Out), and (In). The derivations of the
corresponding τ -transitions can be found in the proof of Lemma 19. The addition of
new-binding introduces several subtleties, some inherited from the π-calculus and some
related to scope extrusion and intrusion across box boundaries. We discuss the latter
briefly.

The (Red Down) rule involves synchronisation on the box name n but not on the
channel name x — there are reductions such as

((ν x)xnz) | n[0] → (ν x)n[x↑z]

in which a new-bound name enters a box boundary. To correctly match this with a τ -
transition the side-condition for (Res-2) for labels with output tag n requires the bound
name to occur either in channel or value position, and the (Comm) rule reintroduces the

8

x binder on the right hand side.
Similarly, the (Red Up) rule allows new-bound names in channel position to exit a

box boundary, for example in

n[(ν x)x↑z] → (ν x)(xnz | n[0])

The (Res-2) condition for output tag ↑ again requires the bound name to occur either in
channel or value position, here the (Box-1) rule reintroduces the x binder on the right
hand side.

Reductions generated by (Red Comm) involve synchronisation both on the tags and
on the channel name. The (Res-2) condition for output tags ⋆, ↑ and n is analogous to
the standard π-calculus (Open) rule; requiring the bound name to occur in the value but
not in the tag or channel. The (Comm) rule for these output tags is analogous to the
standard π rule — in particular, here it is guaranteed that x ∈ A (see Lemma 11).

Some auxiliary notation is useful. For a sequence of labels ℓ1 . . . ℓk we write

A ⊢ P1
ℓ1−→ . . .

ℓk−→ Pk+1

to mean ∃P2, . . . , Pk . ∀i ∈ 1..k . Ai ⊢ Pi
ℓi−→ Pi+1, where Ai = A ∪

⋃

j∈1..i fn(ℓj). If

ℓ 6= τ we write A ⊢ P
ℓ̂

=⇒ P ′ for A ⊢ P
τ

−→
∗ ℓ
−→

τ
−→

∗
P ′; if ℓ = τ then A ⊢ P

ℓ̂
=⇒ P ′ is

defined as A ⊢ P
τ

−→
∗

P ′.
The two semantics coincide in the following sense.

Theorem 1 If fn(P) ⊆ A then A ⊢ P
τ

−→ Q iff P → Q.

This give confidence that the labelled semantics carries enough information. The proof
is somewhat delicate — it can be found in Appendix A.

2.4 Bisimulation

The statements of some relationships between the behaviour of a wrapped and an un-
wrapped program require an operational equivalence relation. As box-π is asynchronous,
an appropriate notion can be based on the weak asynchronous bisimulation of [ACS96].
Consider a family S of relations indexed by finite sets of names such that each SA is a
symmetric relation over {P | fn(P) ⊆ A }. Say S is a weak asynchronous bisimulation if

• P SA Q, A ⊢ P
ℓ

−→ P ′ and ℓ is an output or τ transition imply ∃Q′ . A ⊢ Q
ℓ̂

=⇒
Q′

∧ P ′ SA∪fn(ℓ) Q′, and

• P SA Q, A ⊢ P
xγv
−→ P ′ imply either ∃Q′ . A ⊢ Q

xγv
=⇒ Q′

∧ P ′ SA∪fn(xγv) Q′ or

∃Q′ . A ⊢ Q =⇒ Q′
∧ P ′ SA∪fn(xγv) (Q′ | xγv).

We write ≈ for the union of all weak asynchronous bisimulations. (This definition has
not been thoroughly tested – in particular, it has not been proved to be a congruence.)

3 Security Wrappers

This section gives three example wrappers. The first encapsulates a single component,
restricting its interactions with the outside world to communications obeying a certain
protocol. The second is similar, but also writes a log of all such communications. The

9

third wrapper encapsulates two components, allowing each to interact with the outside
world in a limited way but also allowing information to flow from the first to the second
(but not vice versa).

A wrapper design must be in the context of some fixed protocol which components
should use for communication with their environment and with each other. For the first
two wrappers we fix two channel names, in and out , for components to receive and send
messages respectively. Moreover, we assume that components will always be executed
within some box and should be communicating with the parent box. A trivial component
that receives values v and then copies pairs 〈v v〉 to the output would be written as

! in↑y.out
↑
〈y y〉

A malicious component might also write data to another illicit output channel available
in the environment, e.g.

! in↑y.
(

net
↑
y | out

↑
〈y y〉

)

or eavesdrop on communications between other parts of the system, e.g.

! c⋆y.(net
↑
c | c⋆y

)

We can express whether a component obeys the protocol in terms of the labelled transi-

tion semantics – say P is well-behaved for a unary wrapper iff whenever A ⊢ P
l1..lk−→ Q

then the lj are of the form in↑v, out
↑
v, or τ .

A Filtering Wrapper A filter is a wrapper that simply restricts the communication
abilities of a process. We consider a static filter that allows interaction on two channels
in and out only.

W1[]
def
= (ν a)

(

a[]

| ! in↑y.in
a
y

| ! outay.out
↑
y

)

W1 executes its component within a freshly-named box, installing forwarders to move
legitimate messages across the boundary. Note that this and further wrappers are non-
binding contexts – equivalently, we assume wherever we apply W1 to a process P that
the new-bound a does not occur free in P (in an implementation this could be ensured
either probabilistically or with a linear-time scan of P). Irrespective of the behaviour of
P , W1[P] does obey the protocol – this can be stated clearly using the labelled transition
semantics:

Proposition 2 For any program P with a 6∈ fn(P), if A ⊢ W1[P]
l1..lk−→ Q then the lj are

of the form in↑v, out
↑
v, or τ .

The proof is via an explicit characterisation of the states reachable by labelled transitions
of W1[P]. A proof of this, and of the other properties of W1, can be found in the
Appendices. We say a unary wrapper with this property is pure.

The Logging Wrapper The filter can be extended to maintain a log of all communi-
cations of a process, sending copies on a channel log to the environment:

L[]
def
= (ν a)

(

a[]

| ! in↑y.(log
↑
y | in

a
y)

| ! outay.(log
↑
y | out

↑
y)

)

10

A wrapped program L[P] again can interact only in limited ways.

Proposition 3 For any program P with a 6∈ fn(P), if A ⊢ L[P]
l1..ln−→ Q then the lj are

of the form in↑v, out
↑
v, log

↑
v, or τ .

A Pipeline Wrapper A pipeline wrapper allows a controlled flow of information
between two components. We give a binary wrapper W2 that takes two processes. In an
execution of W2[Q1, Q2] the two wrapped processes Qi can interact with the environment
as before, on channels ini and out i. In addition, Q1 can send messages to Q2 on a channel
mid . The pipeline implemented here is unordered.

W2[1, 2]
def
= (ν a1, a2)

(

a1[1] | a2[2]

| ! in1
↑y.in1

a1
y

| ! in2
↑y.in2

a2
y

| ! out1
a1y.out1

↑
y

| ! out2
a2y.out2

↑
y

| !mida1y.mid
a2

y
)

As before W2 is a non-binding context – we assume, wherever we apply it to two processes
P1, P2, that {a1, a2}∩ fn(P1, P2) = ∅. Say a binary wrapper C is pure iff for any programs
P1, P2, (satisfying the appropriate free name condition – for W2 that with {a1, a2} ∩

fn(P1, P2) = ∅), if A ⊢ C[P1, P2]
l1..lk−→ Q then the lj are of the form ini

↑v, outi
↑
v, or τ .

Proposition 4 W2 is pure.

For an example of a blocked attempt by the second process to send a value to the first,

suppose P2 = mid
↑
v. We have

W2[P1, mid
↑
v] = (ν a1, a2)

(

a1[P1] | a2[mid
↑
v] | R

)

→ (ν a1, a2)
(

a1[P1] | a2[0] | mid
a2

v | R
)

where R is the parallel composition of forwarders. The output mid
a2

v in the final state
cannot interact further – not with the environment, as a2 is restricted, and not with the
forwarder !mida1y.mid

a2
y, as a1 6= a2.

These wrappers all assume a rather simple fixed protocol. It would be straightforward
to generalise to arbitrary sets of channels instead of in, out and mid . It would also be
straightforward to allow n-ary wrappers, encapsulating many components and allowing
information to flow only on a given preorder between them. Other generalisations are
discussed in the conclusion.

4 Honesty and Composition

The properties of wrappers stated in the previous section are very weak. For example,
the unary wrapper

C[]
def
= 0

is also pure, but is useless. In this section we identify the class of honest wrappers that
are guaranteed to forward legitimate messages. This gives the authors of components a
clear statement of (some of) the properties of the environment that can be relied upon.

11

An initial attempt might be to take W1 as a specification, defining a unary wrapper
C to be honest iff for any program P the processes C[P] and W1[P] are operationally
equivalent. This is unsatisfactory – it rules out wrappers such as L, and it does not give
a very clear statement of the properties that may be assumed of an honest wrapper.

A better attempt might be to say that a unary wrapper C is honest iff for any well-
behaved P the processes C[P] and P are operationally equivalent. This would be unsatis-
factory in two ways. Firstly, some intuitively sound wrappers have additional interactions
with the environment – e.g. the logging outputs of L – and so would not be considered
honest by this definition. Secondly, this definition would not constrain the behaviour of
wrappers for non-well-behaved P at all – if a component P attempted, in error, a single
illicit communication then C[P] might behave arbitrarily.

To address these points we give explicit definitions of honesty, first for unary wrappers
and then for binary, in the style of weak asynchronous bisimulation. Consider a family
R indexed by finite sets of names such that each RA is a relation over {P | fn(P) ⊆ A }.
Say R is an h-bisimulation if, whenever C RA Q then:

1. if A ⊢ C
ℓ

−→ C′ for ℓ = out
↑
v, τ then A ⊢ Q

ℓ̂
=⇒ Q′

∧ C′ RA∪fn(ℓ) Q′

2. if A ⊢ C
in↑v
−→ C′ then either A ⊢ Q

in↑v
=⇒ Q′ and C′ RA∪fn(in,v) Q′ or A ⊢ Q =⇒ Q′

and C′ RA∪fn(in,v) Q′ | in
↑
v

3. if A ⊢ C
ℓ

−→ C′ for any other label then C′ RA∪fn(ℓ) Q

together with symmetric versions of clauses 1 and 2. Say a unary wrapper C is honest if
for any program P (satisfying the appropriate free name condition) and any A ⊇ fn(C[P])
there is an h-bisimulation R with C[P] RA P .

Loosely, clauses 1, 2 and the symmetric versions ensure that legitimate communi-
cations and internal reductions must be weakly matched. Clause 3 ensures that if the
wrapper performs some additional communication then this does not affect the state as
seen by the wrapped process.

Proposition 5 The unary wrappers W1 and L are honest.

We give some examples of dishonest wrappers. Take

C[]
def
= (ν a)a[]

This is not honest – a transition A ⊢ P
out

↑
v

−→ P ′ cannot be matched by C[P], violating
the symmetric version of clause 1. Now consider

C[]
def
=

This wrapper is also dishonest as C[P] can perform actions not in the protocol that

essentially affect the state of P . For example, take P = x⋆y.out
↑
〈〉. Suppose C[P] RA P

for an h-bisimulation R. We have A ⊢ C[P]
x⋆

〈〉
−→ out

↑
〈〉 so by clause 3 out

↑
〈〉 RA P ,

but then clause 1 cannot hold – the left hand side can perform an out
↑
〈〉 transition that

cannot be matched be the right hand side.

12

Composition of Wrappers The protocol for communication between a component
and a unary wrapper is designed so that wrappers may be nested. We conjecture that
the composition of any honest unary wrappers is honest.

Conjecture 6 If C1 and C2 are honest unary wrappers then C1 ◦ C2 is honest.

Analogous results for non-unary wrappers would require wrappers with more complex
interfaces so that the input, output and mid channels could be connected correctly.

A desirable property of a pure wrapper is that it should not affect the behaviour of
any well-behaved component — one might expect for any pure and honest C and well-
behaved P that C[P] ≈A P (where A ⊇ fn(C[P])). Unfortunately this does not hold, even
for W1, as the wrapper can make input transitions that cannot be matched. One can
check W1[0] 6≈A 0, yet 0 is well-behaved. In practice one would expect the environment
of a wrapper to not be able to detect these inputs, but to make this precise would require
an operational equivalence relativised to such ‘well-behaved’ environments.

A simpler property would be that multiple wrappings have no effect. We conjecture
that W1 is idempotent, i.e. that W1[W1[P]] and W1[P] have the same behaviour (up to
weak asynchronous bisimulation):

Conjecture 7 For any program P with a 6∈ fn(P) and A ⊇ fn(W1[P]) we have W1[P] ≈A

W1[W1[P]].

4.1 Honesty for Binary Wrappers

The definition of honesty for binary wrappers must take into account the mid commu-
nication. Consider a family R indexed by finite sets of names such that each RA is
a relation between terms and pairs of terms, all with free names contained in A. Say
R is a binary h-bisimulation if, whenever C RA (Q1, Q2) the clauses below hold. The
key difference with the unary definition is clause 7; the other clauses are routine, albeit
notationally complex.

1. if A ⊢ C
outi

↑
v

−→ C′ then A ⊢ Qi
outi

↑
v

=⇒ Q′
i, A ⊢ Q3−i =⇒ Q′

3−i and C′ RA∪fn(v)

(Q′
1, Q

′
2).

2. if A ⊢ C
ini

↑v
−→ C′ then A ⊢ Q3−i =⇒ Q′

3−i and either A ⊢ Qi
ini

↑v
=⇒ Q′

i ∧ C′ RA∪fn(v)

(Q′
1, Q

′
2) or A ⊢ Qi =⇒ Q′′

i ∧ C′ RA∪fn(v) (Q′
1, Q

′
2), where Q′

i = Q′′
i | in

↑
v.

3. if A ⊢ C
τ

−→ C′ then A ⊢ Q1 =⇒ Q′
1, A ⊢ Q2 =⇒ Q′

2 and C′ RA (Q′
1, Q

′
2).

4. if A ⊢ C
ℓ

−→ C′ for any other label then C′ RA∪fn(ℓ) (Q1, Q2)

5. if A ⊢ Qi
ℓ

−→ Q′
i for ℓ = outi

↑
v, τ then A ⊢ C

ℓ̂
=⇒ C′, and C′ RA∪fn(ℓ) (Q′

1, Q
′
2),

where Q′
3−i = Q3−i.

6. if A ⊢ Qi
ini

↑v
−→ Q′

i then either A ⊢ C
ini

↑v
=⇒ C′

∧ C′ RA∪fn(v) (Q′
1, Q

′
2) or A ⊢ C =⇒

C′
∧ C′ | in

↑
v RA∪fn(v) (Q′

1, Q
′
2), where Q′

3−i = Q3−i.

7. if A ⊢ Q1
mid

↑
v

−→ Q′
1 then A ⊢ C =⇒ C′

∧ C′ RA∪fn(v) (Q′
1, Q2 | mid

↑
v).

A binary wrapper C is honest if for all P1, P2 (satisfying the appropriate free name condi-
tion) and any A ⊇ fn(C[P1, P2]) there exists a binary h-bisimulation R with C[P1, P2] RA

(P1, P2).

13

Conjecture 8 W2 is honest.

5 Constrained Interaction Between Components

In our motivating example Karen required fine-grain control over the information flows
between components – in the binary case, allowing unidirectional flow. By examining
the code for W2 it is intuitively clear that it achieves this, preventing information flowing
from Q to P within W2[P, Q]. When one comes to make this intuition precise, however,
it becomes far from clear exactly what behavioural properties W2 guarantees that make
it a satisfactory wrapper from the user’s point of view (who should not have to examine
the wrapper code). Honesty is one, but it does not prohibit bad flows. In this section we
give a number of candidate properties, stating four precisely and the others informally.
We conjecture that all are satisfied by W2 but that none are equivalent. None are entirely
satisfactory; we hope to provoke discussion of exactly what guarantees should be desired
by users and by component designers. For simplicity, only pure binary wrappers C are
considered – recall that for a pure binary C the labelled transitions of C[P1, P2] will only

be of the forms ini
↑v, outi

↑
v and τ .

5.1 New-name directionality

As we are using a calculus with creation of new names, we can test a wrapper by supplying
a new name to the second component, on in2, and observing whether it can ever be output
by the first component on out1. Say C is directional for new names if whenever

A ⊢ C[P1, P2]
ℓ1−→ . . .

ℓj
−→

in2
↑u

−→
ℓ′1−→ . . .

ℓ′k−→
out1

↑
u′

−→ P

with x ∈ fn(u), but x is new, i.e. x 6∈ A ∪ fn(ℓ1 . . . ℓj), and x is not subsequently input
to the first component, i.e.

x 6∈
⋃

i∈1..k∧ℓ′i=in1
↑v

fn(v)

then x is not output by the first component, i.e. x 6∈ fn(u′). This property does not
prevent all information flow, however – a variant of W2 containing a reverse-forwarder
that only forwards particular values, such as

!mida2y.if y ∈ {0, 1} then mid
a1

y

could still satisfy it. (Here 0 and 1 are free names, which must therefore be in A.)
Note that a binary wrapper C is intended only to limit information flow within

C[P1, P2]. We do not wish to place any constraint on the environment of the wrap-
per, for example forbidding the environment to copy values received from out2 to in1.
Such a restriction could only be imposed by draconian measures, e.g. by waiting for P1

to terminate before starting P2, that would not be acceptable to the desktop user. Many
programs are essentially non-terminating; if they are executing concurrently then the
user cannot be prevented from reading the output of one and copying it to the other. In
many circumstances this should be explicitly supported by the desktop cut-and-paste,
perhaps with a warning signal.

5.2 Permutation

Our second property formalises the intuition that if no observable behaviour due to P1

depends on the behaviour of P2 then in any trace it should be possible to move the actions

14

associated with P1 before all actions associated with P2. Say C has the permutation
property if whenever

A ⊢ C[P1, P2]
ℓ1=⇒ . . .

ℓk=⇒ P

with ℓi 6= τ there exists a permutation π of {1, . . . , k} such that

A ⊢ C[P1, P2]
ℓπ(1)
=⇒ . . .

ℓπ(k)
=⇒ P

and no in1 or out1 transition occurs after any in2 or out2 transition in ℓπ(1) . . . ℓπ(k). For
an example wrapper without this property, consider

C[1, 2]
def
= (ν a1, a2)

(

a1[1] | a2[2]

| ! in2
↑y.

(

in2
a2

y | ! in1
↑y.in1

a1
y
)

| ! out1
a1y.out1

↑
y

| ! out2
a2y.out2

↑
y

| !mida1y.mid
a2

y
)

Here the in1 messages are not forwarded until at least one in2 input is received from
the environment. Nonetheless, in some sense there is still no information flow from the
second component to the first.

The new-name directionality and permutation properties are expressed purely in
terms of the externally observable behaviour of C[P, Q] (in fact, they are properties of its
trace set, a very extensional semantics). Note, however, that the intuitive statement that
information does not flow from Q to P depends on an understanding of the internal com-
putation of P and Q that is not present in the reduction or labelled transition relations
(given only that C[P, Q] →∗ R there is no way to associate subterms of R with an ‘origin’
in C, P or Q). Our next two properties involve a more intensional semantics in which
output and input processes are tagged with sets of colours. The semantics propagates
colours in interaction steps, thereby tracking the dependencies of reductions.

5.3 Coloured Reductions

Take a set col of colours (disjoint from N), and let c and d range over subsets of col.
We define a coloured box-π calculus by annotating all outputs and inputs with sets of
colours:

P ::= c :xov
∣

∣ c :xιp.P
∣

∣ c : !xιp.P
∣

∣

n[P]
∣

∣ 0
∣

∣ P | P ′
∣

∣ (ν x)P

If P is a coloured term we write |P | for the term of the original syntax obtained by
erasing all annotations. Conversely, for a term P of the original syntax c ◦P denotes the
term with every particle coloured by c. For a coloured P we write c •P for the coloured
term which is as P but with c unioned to every set of colours occurring in it. We write cd

for the union c ∪ d. The reduction relation now takes the form P →c Q, where P and Q
are coloured terms and c is a set of colours indicating what this reduction depends upon.
It is defined as follows, in which structural congruence is defined by the same axioms as

15

before.

n[c :x↑v | Q] →c c :xnv | n[Q] (C Red Up)

c :xnv | n[Q] →c n[c :x↑v | Q] (C Red Down)

c :xιv | d :xιp.P →cd cd •({v/p}P) (C Red Comm)

c :xιv | d : !xιp.P →cd d : ! xιp.P | cd •({v/p}P) (C Red Repl)

P →c Q ⇒ P | R →c Q | R (C Red Par)

P →c Q ⇒ (ν x)P →c (ν x)Q (C Red Res)

P →c Q ⇒ n[P] →c n[Q] (C Red Box)

P ≡ P ′ →c Q′ ≡ Q ⇒ P →c Q (C Red Struct)

The coloured calculus has the same essential behaviour as the original calculus:

Proposition 9 For any coloured P we have |P | → Q iff ∃c, P ′ . P →c P ′
∧ |P ′| = Q.

Mediation We can now capture the intuition that all interaction between wrapped
components should be mediated by the wrapper. We consider coloured reduction se-
quences of a wrapper C and two components P1, P2 from an initial state in which each is
coloured differently. Let gr, bl and rd be distinct singleton subsets {green}, {blue}, {red}
of col. Suppose

(gr ◦ C)
[

bl ◦P1, rd ◦P2

]

| bl ◦ I1 | rd ◦ I2 →c1 . . . →ck
Q

where each Ii is a parallel composition of messages on ini, i.e. of terms of the form ini
↑
v.

Say C is mediating iff whenever red ∈ cj and blue ∈ cj then green ∈ cj.

Colour flow The coloured semantics can also be used to express the property that
no output on out1 should depend on the second wrapped component. Say C has the
colour directionality property if whenever there is a reduction sequence as above and

Q ≡ (ν A)(c :out1
↑
v | Q′) then red 6∈ c.

For an example wrapper that we conjecture has the permutation property but not
the colour directionality property, consider a version of W2 that has an extra parallel

component out2
a2y.(out2

↑
y | out1

a1y.out1
↑
y). This establishes an additional one-shot

forwarder for out1 after forwarding a message on out2.
These statements of mediation and coloured directionality share a defect: the use

of a reduction semantics makes it awkward to consider inputs of values containing new
names that have previously been output by the wrapped components. To address this
one would need a coloured labelled transition semantics, allowing e.g. a refined colour
directionality property to be stated as follows. Whenever

A ⊢ (gr ◦ C)
[

bl ◦P1, rd ◦P2

] ℓ1−→c1 . . .
ℓk−→ck

,

if the inputs are properly coloured (i.e. for each i ∈ 1..k we have ℓi = in↑
1v =⇒ ci = blue

and ℓi = in↑
2v =⇒ ci = red), then for each i ∈ 1..k the out1 outputs should be properly

coloured, i.e.

ℓi = out1
↑
v =⇒ red 6∈ ci

Causality A very strong directionality property that one might ask for – perhaps the
strongest – would be that in an execution of C[P1, P2] no output on out1 can be causally
dependent on any action of P2. Casual semantics for process calculi have been much

16

studied, often under the name ‘true concurrency semantics’ – see [WN95] for an overview.
It would be interesting to give a causal semantics to the box π calculus. There is a trade-
off here, however – such a semantics would be rather complex; it would have to be
understood in order to understand any property stated using it. The coloured reduction
semantics can be considered as an more tractable approximation to real causality.

Another point is that a causal property is sometimes too strong – a usable wrapper
may have to allow low-bandwidth communication in the reverse direction, perhaps not
carrying any data values, to permit acknowledgement messages. A causal property would
then not hold, while a modified colour flow property would.

6 Conclusion

The code base of modern systems is becoming increasingly diverse. Whereas previously
a typical system would involve a small number of monolithic applications, obtained from
trusted organisations, now users routinely download components from partially trusted
or untrusted sources. Downloaded or mobile code fragments are commonly run under the
user’s authority to grant access to system resources and permit interaction with other
software components. This presents obvious security risks for the secrecy and integrity
of the user’s data.

In this paper we have developed a theory of security wrappers. These are small
programs that can regulate the interactions between untrusted software components,
enforcing dynamic and flexible security policies. We have presented a minimal concurrent
programming language for studying the problem, the box-π calculus, and proved a basic
metatheoretic result: that a reduction and labelled transition semantics coincide. We
have expressed a number of security wrappers in the calculus and begun an investigation
of the security properties that wrappers should provide.

6.1 Related Work

There is an extensive literature on information flow properties of various kinds. Much
of it is in the context of multi-level security, in which one has a fixed lattice of security
levels and is concerned with properties which state that a component (expressed purely
semantically, e.g. as a set of traces) respects the levels. The theory could be applied
during the design of the components of a large multi-user system (with a relatively static
security policy) by proving that the components obey particular properties. A concise
introduction can be found in the survey of McLean [McL94]. The problem of designing
and understanding wrappers appears to be rather different – we have focussed on the
protection required by a single user executing a variety of partially-trusted components
obtained from third parties. This requires flexible protection mechanisms – a static
assignment of security levels would be inadequate – and cannot depend on static analysis
of the components. Related work on dynamic enforcement of policies has been presented
by Schneider [Sch98].

Other recent work has studied type systems that ensure security properties, e.g.
the type systems of Volpano, Irvine and Smith [VIS96, VS98], the SLam calculus of
Heintze and Riecke [HR98a], the systems allowing declassification of Myers and Liskov
[ML98, Mye99], the type systems of Riely and Hennessy [HR98c, HR98b, RH98], and
work on proof-carrying code [NL98]. If the producers of components that one uses all
adopt such systems then they may become very effective. Until then, however, and until
type systems can provide the flexible policies required, partially trusted code will in
practice either be run dangerously or be wrapped.

17

In this paper we have made extensive use of techniques from process calculi and op-
erational semantics. These are beginning to provide fruitful ways of studying problems
in security and distributed systems, including the analysis of security protocols, for ex-
ample in [AG97, Aba97, LR97], and more general secure language design, including work
on the Ambient calculus [CG98, CG99], the Secure Join calculus [AFG98], the mobile
agent calculi in [HR98c, HR98b, RH98, Sew97, Sew98, SWP98a, SWP98b], and the Seal
calculus of [VC98, VC99]. These works have studied several different problems, using
a variety of calculi designed for the purpose. Common to all is the use of a reduction
or labelled-transition operational semantics, providing clear rigorous semantics to the
rather high-level constructs involved. One distinguishing feature of the present work is
that we do not consider any mobility primitives, allowing us to use a tractable early la-
belled transition system. This appears to be important for the statement of the delicate
security properties of wrappers.

6.2 Future Directions

This paper opens up a number of directions that we would like to pursue. Most imme-
diately, it gives several conjectures that should be proved or refuted, and we would like
a better understanding of the properties of binary wrappers. There are then extensions
for typing, to richer interfaces, and with mobility primitives.

Typing We are primarily interested in components for which it is infeasible to statically
determine whether they are well-behaved. Nonetheless, for simple components one could
conservatively ensure well-behaviour with a standard type system, most simply taking
types

T ::= box
∣

∣ 〈T1..Tk〉
∣

∣ lT

where lT is the type of channel names that can be used to communicate values of type
T , together with the obvious inference rules. If P is well-typed with respect to a typing
context in : lS, out : lT for types S and T containing no instances of l then one would
expect P to be well-behaved for unary wrappers.

Richer interfaces The wrappers of §3 allowed the encapsulated components to inter-
act only on very simple interfaces. Ultimately, we would like to understand wrappers
with more realistic interfaces. For example, in a mild extension of box-π one can express
a wrapper that encapsulates k components, allows internal flow along an arbitrary pre-
order, and permits each component to open and close windows for character IO. Suppose
p1, . . . , pk is a list of distinct names, and ≥ is a preorder over them giving the allowable
information flow. Define a k-ary wrapper as follows.

C[1, . . . , k]
def
= (ν p1, . . . , pk)

(

p1[1] | . . . | pk[k]

| ! fwd(m)
(n z y).if m ≥ n then zny else 0

| BWindow
)

18

where

BWindow
def
= ! openwindow (m)

(s x).

openwindow
↑
〈s x〉

| x↑(getc putc close).
xm〈getc putc close〉

| ! getcmy.(getc
↑
y | y↑c.ymc)

| ! putcm(c y).(putc
↑
〈c y〉 | y↑.ym)

| ! closemy.(close
↑
y | y↑.ym)

This uses an additional input tag – a process x(n)p.P will input from any child box,
binding the name of the box to n in P . The BWindow part of C receives requests
for a new window from the encapsulated components and forwards them to the OS. It
then receives the interface for the new window from the OS, forwarding it down to the
component and also setting up forwarders for the interface channels. Making the security
properties of C precise is at present a challenging problem. One would like to extend C
further by adding an interface allowing the user to dynamically add and remove pairs
from ≥.

Covert channels It should be noted that none of the semantic models that we use for
the box-π calculus make any commitment to the precise details of scheduling processes.
The properties expressed using these semantics therefore cannot address timing-based
covert channels such as those mentioned by Lampson [Lam73]. Certain other covert
channels, in particular those involving system IO and disc access, could be addressed
by expressing models of the IO and disc systems in the calculus, further enriching the
wrapper interfaces.

Mobility The original motivation for this work involved downloadable or mobile code
and mobile agents. To explicitly model the dynamic configuration of wrappers and ap-
plications the calculus must be extended with mobility primitives, while keeping both a
tractable semantics and the principle that each box controls the interactions and move-
ments of its contents [VC98].

Acknowledgements Sewell was supported by EPSRC grant GR/L 62290 Calculi for
Interactive Systems: Theory and Experiment. The authors would like to thank Ciarán
Bryce for his comments.

19

A Coincidence of the Two Semantics

This appendix contains the proof of equivalence of the labelled transition semantics
and the reduction semantics. It is divided into three parts, the first giving basic properties
of the labelled transition system, the second showing that any reduction can be matched
by a τ -transition and the third showing the converse.

Basic Properties of the LTS

Lemma 10 If P ≡ Q then fn(P) = fn(Q).

Proof Routine induction on derivation of P ≡ Q. 2

Lemma 11 If A ⊢ P
ℓ

−→ Q then

1. fn(P) ⊆ A

2. fn(Q) ⊆ fn(P, ℓ)

3. if ℓ = xov then fn(ℓ) ∩ A ⊆ fn(P)

4. if ℓ = xov then fn(o) ⊆ fn(P)

5. if ℓ = xov and ¬mv(o) then x ∈ fn(P)

6. if ℓ = xγv then fn(γ) ⊆ fn(P).

7. if ℓ = xγv and γ 6= n then x ∈ fn(P).

Proof By induction on the derivation of A ⊢ P
ℓ

−→ Q. Part 1 is immediate in all
cases by the implicit condition. For the other parts:

(Trans Out) By the condition fn(xov) ⊆ A.

(Trans In) For Part 2, fn({v/p}P) ⊆ (fn(P) − fn(p)) ∪ fn(v) ⊆ fn(xιp.P) ∪ fn(xιv). For
Parts 6 and 7, fn(x, ι) ⊆ fn(xιp.P). All other parts do not apply.

(Trans Repl) For Part 2, fn(!xιp.P | {v/p}P) ⊆ fn(!xιp.P) ∪ (fn(P) − fn(p)) ∪ fn(v) ⊆
fn(!xιp.P) ∪ fn(xιv). For Part 6 and 7, fn(x, ι) ⊆ fn(! xιp.P). All other parts do
not apply.

(Trans Box-1) We have ℓ = τ . For Part 2:
fn((ν fn(x, v) − A)(xnv | n[P ′]))

= (fn(xnv) ∪ {n} ∪ fn(P ′)) − (fn(x, v) − A) (by definition of fn)
⊆ (fn(xnv) ∪ {n} ∪ fn(P) ∪ fn(x↑v)) − (fn(x, v) − A) (by ind. hyp., part 2)
⊆ (fn(xnv) ∪ fn(n[P])) − (fn(x, v) − A)
⊆ fn(n[P]) (by ind. hyp., part 3)
= fn(n[P], τ)

All other parts do not apply.

(Trans Box-2) We have ℓ = xnv. For Part 2: fn(n[x↑v | P]) = fn(n[P]) ∪ fn(x↑v) ⊆
fn(n[P]) ∪ fn(xnv). For Part 6 note that n ∈ fn(n[P]). All other parts do not
apply.

20

(Trans Box-3) For Part 2, by the induction hypothesis fn(P ′) ⊆ fn(P) so fn(n[P ′]) ⊆
fn(n[P]). All other parts do not apply.

(Trans Par) By the induction hypothesis.

(Trans Comm) Part 2 is by parts 2, 4 and 6 of the induction hypothesis. All other
parts do not apply.

(Trans Res-1) By the induction hypothesis.

(Trans Res-2) For Part 2, by Part 2 of the induction hypothesis fn(P ′) ⊆ fn(P) ∪
fn(yov). As x ∈ fn(yov) we have fn(P ′) ⊆ fn((ν x)P) ∪ fn(yov). For Part 3, by the
induction hypothesis fn(yov) ∩ (A, x) ⊆ fn(P) so fn(yov) ∩ A ⊆ fn((ν x)P). For
Part 4, by the induction hypothesis fn(o) ⊆ fn(P) and by the side condition x 6= o
so fn(o) ⊆ fn((ν x)P). For Part 5, if ¬mv(o) then by the induction hypothesis
y ∈ fn(P) and by the side condition x 6= y so y ∈ fn((ν x)P). All other parts do
not apply.

(Trans Struct Right) By the induction hypothesis and Lemma 10.

2

Lemma 12 (Strengthening) If A, B ⊢ P
ℓ

−→ P ′ and B ∩ fn(P, ℓ) = ∅ then A ⊢ P
ℓ

−→
P ′.

Proof Induction on derivations of transitions.

(Out), (In), (Repl), (Box-2) All immediate.

(Box-3),(Par),(Struct Right) Straightforward use of the induction hypothesis.

(Comm) We have a rule instance of the form

A, B ⊢ P
xγv
−→ P ′ A, B ⊢ Q

xγv
−→ Q′

A, B ⊢ P | Q
τ

−→ (ν fn(x, v) − (A, B))(P ′ | Q′)
(Comm)

By Lemma 11.3 fn(xγv) ∩ (A, B) ⊆ fn(P) and by assumption B ∩ fn(P) = ∅
so fn(xγv) ∩ B = ∅. By the induction hypothesis and (Comm) we then have

A ⊢ P | Q
τ

−→ (ν fn(x, v) − A)(P ′ | Q′), but fn(x, v) − A = fn(x, v) − (A, B), so

A ⊢ P | Q
τ

−→ (ν fn(x, v) − (A, B))(P ′ | Q′) as required.

(Box-1) Similar to (Comm). In detail: we have a rule instance of the form

A, B ⊢ P
x↑v
−→ P ′

A, B ⊢ n[P]
τ

−→ (ν fn(x, v) − (A, B))(xnv | n[P ′])
(Box-1)

By Lemma 11.3 fn(x↑v) ∩ (A, B) ⊆ fn(P) and by assumption B ∩ fn(P) = ∅ so
fn(x↑v) ∩ B = ∅. By the induction hypothesis and (Box-1) we then have A ⊢

n[P]
τ

−→ (ν fn(x, v) − (A))(xnv | n[P ′]) but fn(x, v) − A = fn(x, v) − (A, B), so

A ⊢ n[P]
τ

−→ (ν fn(x, v) − (A, B))(xnv | n[P ′]) as required.

21

(Res-1) We have a rule instance of the form

A, B, x ⊢ P
ℓ

−→ P ′

A, B ⊢ (ν x)P
ℓ

−→ (ν x)P ′
(Res-1)

with x 6∈ fn(ℓ). By A, B, x well-formed we have x 6∈ B, so B ∩ fn((ν x)P) = ∅

implies B ∩ fn(P) = ∅. By the induction hypothesis A, x ⊢ P
ℓ

−→ P ′ so by (Res-1)

A ⊢ (ν x)P
ℓ

−→ (ν x)P ′.

(Res-2) Similar to (Res-1), noting that the sidecondition is a predicate on x and the
label only.

2

Lemma 13 (Injective Substitution) If A ⊢ P
ℓ

−→ P ′, and f : A→B and g :(fn(ℓ) −

A)→(N − B) are injective, then B ⊢ fP
(f+g)ℓ
−→ (f + g)P ′.

Proof Induction on derivations of transitions.

(Out),(Box-1) immediate.

(Box-3),(Par),(Struct Right) Straightforward uses of the induction hypothesis.

(In) Consider A ⊢ xιp.P
xιv
−→ {v/p}P . We have fn(xιp.P) ⊆ A and {v/p}P well defined.

Take some p̂ and P̂ such that xιp.P = xιp̂.P̂ and n(p̂)∩(A∪B∪(fn(ℓ)−A)∪ran(g)) =

∅, then f(xιp.P) = f(xιp̂.P̂) = f(x)
f(ι)

p̂.f(P̂) and fn(f(x)
f(ι)

p̂.f(P̂)) ⊆ B.

We have {v/p̂}P̂ defined, hence {v/p̂}(fP̂) is defined (as n(p̂)∩ (dom(f)∪ ran(f)) =

∅), hence {(f+g)v/p̂}(fP̂) is defined (as (f + g)v and v are the same shape).

By (In) B ⊢ f(x)
f(ι)

p̂.f(P̂)
f(x)f(ι)(f+g)v

−→ {(f+g)v/p̂}fP̂ .

Now fn(P̂) ⊆ A ∪ n(p̂) so fn(P̂) ∩ dom(g) = ∅, so fP̂ = (f + g)P̂ . Hence
{(f+g)v/p̂}fP̂ = {(f+g)v/p̂}(f + g)P̂ = (f + g)({v/p̂}P̂) = (f + g)({v/p}P), so B ⊢

f(xιp.P)
(f+g)xιv
−→ (f + g)({v/p}P).

(Repl) Similar to (In), using in addition that f(!xιp.P) = (f + g)(!xιp.P).

(Comm) fn(τ) = ∅, so we have f : A→B and g : ∅→(N − B). Take some ĝ :(fn(xγv) −
A)→(N − B) injective. By the induction hypothesis and (Comm) we have

B ⊢ fP
(f+ĝ)(xγv)

−→ (f + ĝ)P ′ B ⊢ fQ
(f+ĝ)(xγv)

−→ (f + ĝ)Q′

B ⊢ f(P | Q)
τ

−→ (ν fn((f + ĝ)x, (f + ĝ)v) − B)((f + ĝ)(P ′ | Q′))
(Comm)

Now by Lemma 11.(4,1) fn(γ) ⊆ A, so dom(ĝ) = fn(x, v) − A and ran(ĝ) =

fn((f + ĝ)x, (f + ĝ)v) − B, so B ⊢ f(P | Q)
τ

−→ (ν ran(ĝ))((f + ĝ)(P ′ | Q′)). We

have f((ν dom(ĝ))(P ′ | Q′)) = ((ν ran(ĝ))(f + ĝ)(P ′ | Q′)), so B ⊢ f(P | Q)
τ

−→
f((ν fn(x, v) − A)(P ′ | Q′)).

22

(Box-1) Again similar to (Comm). fn(τ) = ∅, so we have f : A→B and g : ∅→(N −B).
Take some ĝ :(fn(x↑v) − A)→(N − B) injective. By the induction hypothesis and
(Box-1) we have

B ⊢ fP
(f+ĝ)(x↑v)

−→ (f + ĝ)P ′

B ⊢ f(n)[fP]
τ

−→ (ν fn((f + ĝ)x, (f + ĝ)v) − B)((f + ĝ)(xnv | n[P ′])
(Box-1)

using f(n) = (f+ĝ)(n). It follows that B ⊢ f(n[P])
τ

−→ f((ν fn(x, v) − A)(xnv | n[P ′])).

(Res-1) Take some x̂ 6∈ B ∪ ran(g) and define f̂ :(A, x)→(B, x̂) by

f̂(x) = x̂

f̂(z) = f(z), for z ∈ A.

By the induction hypothesis B, x̂ ⊢ f̂P
(f̂+g)ℓ
−→ (f̂ + g)P ′. By (Res-1) B ⊢ (ν x̂)f̂P

(f̂+g)ℓ
−→

(ν x̂)(f̂ + g)P ′, so B ⊢ f((ν x)P)
(f+g)ℓ
−→ (f + g)(ν x)P ′.

(Res-2) Define f̂ :(A, x)→(B, g(x)) and ĝ as f + (x 7→ g(x)) and g ⇂ (fn(yov) − (A, x))

respectively. By the induction hypothesis B, g(x) ⊢ f̂P
(f̂+ĝ)yov
−→ (f̂ + ĝ)P ′, so

by (Res-2) B ⊢ (ν g(x))f̂P
(f̂+ĝ)yov
−→ (f̂ + ĝ)P ′, so as f + g = f̂ + ĝ we have

B ⊢ f((ν x)P)
(f+g)yov
−→ (f + g)P ′.

2

Lemma 14 (Weakening and Strengthening) (A ⊢ P
ℓ

−→ P ′
∧ x 6∈ A ∪ fn(ℓ)) iff

(A, x ⊢ P
ℓ

−→ P ′
∧ x 6∈ fn(P, ℓ)).

Proof The right-to-left implication follows from the well-formedness of A, x and from
Lemma 12. The left-to-right implication follows from the condition fn(P) ⊆ A in the
definition of the transition rules and from Lemma 13, taking f to be the inclusion from
A to A, x and g the identity on fn(ℓ) − A. 2

Lemma 15 (Shifting)

1. (A ⊢ P
zιv
−→ P ′

∧ x ∈ fn(v) − A) iff (A, x ⊢ P
zιv
−→ P ′

∧ x ∈ fn(v) − fn(P)) .

2. (A ⊢ P
znv
−→ P ′

∧ x ∈ fn(z, v) − A) iff (A, x ⊢ P
znv
−→ P ′

∧ x ∈ fn(z, v) − fn(P))

Proof Each part is by two inductions on derivations of transitions. For the first:

(Out),(Box-1),(Box-2),(Box-3),(Comm),(Res-2) vacuous.

(Par),(Struct Right) Straightforward uses of the induction hypothesis.

(In),(Repl) Straightforward.

23

(Res-1) Consider

A, y ⊢ P
zιv
−→ P ′

A ⊢ (ν y)P
zιv
−→ (ν y)P ′

(Res-1)
A, x, y ⊢ P

zιv
−→ P ′

A, x ⊢ (ν y)P
zιv
−→ (ν y)P ′

(Res-1)

y 6∈ fn(zιv) y 6∈ fn(zιv)
x ∈ fn(v) − A x ∈ fn(v) − fn((ν y)P))

For the left-to-right implication, note that x ∈ fn(v) − (A, y), so by the induction

hypothesis A, y, x ⊢ P
zιv
−→ P ′ and x ∈ fn(v) − fn(P). For the right-to-left impli-

cation, note that as A, x, y is well-formed we have x ∈ fn(v) − fn(P), so by the

induction hypothesis A, y ⊢ P
zιv
−→ P ′ and x ∈ fn(v) − (A, y).

For the second part:

(Out),(In),(Repl),(Box-1),(Box-3),(Comm),(Res-2) vacuous.

(Par),(Struct Right) Straightforward uses of the induction hypothesis.

(Box-2) Straightforward.

(Res-1) Similar to the (Res-1) case of the first part.

2

As we are working up to alpha conversion a little care is required when analysing
transitions. We need the following lemma (of which only the input and restriction cases
are at all interesting).

Lemma 16

1. A ⊢ xov
ℓ

−→ Q iff fn(xov) ⊆ A, ℓ = xov and Q ≡ 0.

2. A ⊢ xιp.P
ℓ

−→ Q iff there exists v such that fn(xιp.P) ⊆ A, ℓ = xιv, {v/p}P is
defined and Q ≡ {v/p}P .

3. A ⊢ !xιp.P
ℓ

−→ Q iff there exists v such that fn(! xιp.P) ⊆ A, ℓ = xιv, {v/p}P is
defined and Q ≡ !xιp.P | {v/p}P .

4. A ⊢ n[P]
ℓ

−→ Q iff one of the following hold.

(a) there exist x, v, and P̂ such that n ∈ A, ℓ = τ , A ⊢ P
x↑v
−→ P̂ , and Q ≡

(ν fn(x, v) − A)(xnv | n[P̂]).

(b) there exist x and v such that fn(n[P]) ⊆ A, ℓ = xnv and Q ≡ n[x↑v | P].

(c) there exists P̂ such that n ∈ A, ℓ = τ , A ⊢ P
τ

−→ P̂ , and Q ≡ n[P̂].

5. A ⊢ P | Q
ℓ

−→ R iff either

(a) there exists P̂ such that fn(Q) ⊆ A, A ⊢ P
ℓ

−→ P̂ and R ≡ P̂ | Q.

(b) there exists x, γ, v, P̂ and Q̂ such that ℓ = τ , A ⊢ P
xγv
−→ P̂ , A ⊢ Q

xγv
−→ Q̂,

and R ≡ (ν fn(x, v) − A)(P̂ | Q̂).

24

or symmetric cases.

6. A ⊢ (ν x)P
ℓ

−→ Q iff either

(a) there exists x̂ 6∈ A ∪ fn(ℓ) ∪ (fn(P) − x) and Q̂ such that A, x̂ ⊢ {x̂/x}P
ℓ

−→ Q̂
and Q ≡ (ν x̂)Q̂.

(b) there exists y, o, v, Q̂ and x̂ 6∈ A ∪ fn(y, o) ∪ (fn(P) − x) such that ℓ = yov,

A, x̂ ⊢ {x̂/x}P
yov
−→ Q̂, x̂ ∈ fn(v), ¬mv(o) and Q ≡ Q̂.

(c) there exists y, o, v, Q̂ and x̂ 6∈ A ∪ fn(o) ∪ (fn(P) − x) such that ℓ = yov,

A, x̂ ⊢ {x̂/x}P
yov
−→ Q̂, x̂ ∈ fn(y, v), mv(o) and Q ≡ Q̂.

Proof The right-to-left implications are all shown using a single transition rule together
with (Trans Struct Right). The left-to-right implications are shown by induction on
derivations of transitions. Only the input, replicated input and restriction cases are at
all interesting; we give just the restriction case.

Case 6a, (⇐) By Lemma 11, fn({x̂/x}P) ⊆ A, x̂, so we have fn((ν x̂){x̂/x}P) ⊆ A.

By (Trans Res-1), A ⊢ (ν x̂){x̂/x}P
ℓ

−→ (ν x̂)Q̂. By x̂ 6∈ fn(P) − x we have

(ν x̂){x̂/x}P = (ν x)P . By (Trans Struct Right), A ⊢ (ν x)P
ℓ

−→ Q.

Case 6b, (⇐) Again by Proposition 11, fn({x̂/x}P) ⊆ A, x̂, so we have fn((ν x̂){x̂/x}P) ⊆

A. By (Trans Res-2-nmv), A ⊢ (ν x̂){x̂/x}P
yov
−→ Q̂. Again by x̂ 6∈ fn(P) − x, we

have (ν x̂){x̂/x}P = (ν x)P so by (Trans Struct Right) A ⊢ (ν x)P
ℓ

−→ Q.

Case 6c, (⇐) Again by Proposition 11 fn({x̂/x}P) ⊆ A, x̂, so fn((ν x̂){x̂/x}P) ⊆ A.

By (Trans Res-2-mv) A ⊢ (ν x̂){x̂/x}P
x̂
↑
v

−→ Q̂. Again by x̂ 6∈ fn(P) − x we have

(ν x̂){x̂/x}P = (ν x)P so by (Trans Struct Right) A ⊢ (ν x)P
ℓ

−→ Q.

Case 6, (⇒) Let Φ(A, R, ℓ, Q)
def
⇔ R = (ν x)P =⇒ (a) ∨ (b) ∨ (c). We show Φ is closed

under the rules defining labelled transitions.

(Trans Res-1) An instance of (Trans Res-1) with conclusion A ⊢ (ν x)P
ℓ

−→ Q
must be of the form

A, x̂ ⊢ P̂
ℓ

−→ Q̂

A ⊢ (ν x̂)P̂
ℓ

−→ (ν x̂)Q̂
x̂ 6∈ fn(ℓ) (Trans Res-1)

for some x̂, P̂ , Q̂ with (ν x̂)P̂ = (ν x)P , (ν x̂)Q̂ = Q and fn((ν x̂)P̂) ⊆ A. By
A, x̂ defined and x̂ 6∈ fn(ℓ) we have x̂ 6∈ A ∪ fn(ℓ). By (ν x̂)P̂ = (ν x)P we

have x̂ 6∈ fn(P) − x and P̂ = {x̂/x}P , so A, x̂ ⊢ {x̂/x}P
ℓ

−→ Q̂. By reflexivity
of ≡, we have Q ≡ (ν x̂)Q̂. So clause 6a holds.

(Trans Res-2-nmv) An instance of (Trans Res-2-nmv) with the conclusion A ⊢

(ν x)P
ℓ

−→ Q must be of the form

A, x̂ ⊢ P̂
yov
−→ Q

A ⊢ (ν x̂)P̂
yov
−→ Q

¬mv(o) ∧ x̂ ∈ fn(v) − fn(y, o) (Trans Res-2-nmv)

for some x̂, P̂ , y, o, v with (ν x̂)P̂ = (ν x)P , yov = ℓ and fn((ν x̂)P̂) ⊆ A. As
before x̂ 6∈ A∪ (fn(P)− x) and P̂ = {x̂/x}P , so taking Q̂ = Q clause 6b holds.

25

(Trans Res-2-mv) An instance of (Trans Res-2-mv) with the conclusion A ⊢

(ν x)P
ℓ

−→ Q must be of the form

A, x̂ ⊢ P̂
yov
−→ Q

A ⊢ (ν x̂)P̂
yov
−→ Q

mv(o) ∧ x̂ ∈ fn(y, v) − fn(o) (Trans Res-2-mv)

for some x̂, P̂ , y, o, v with (ν x̂)P̂ = (ν x)P , yov = ℓ and fn((ν x̂)P̂) ⊆ A. As
before x̂ 6∈ A∪ (fn(P)− x) and P̂ = {x̂/x}P , so taking Q̂ = Q clause 6c holds.

(Trans Struct Right) An instance of (Trans Struct Right) with conclusion A ⊢

(ν x)P
ℓ

−→ Q must be of the form

A ⊢ (ν x)P
ℓ

−→ Q′ Q′ ≡ Q

A ⊢ (ν x)P
ℓ

−→ Q
(Trans Struct Right)

for some Q′ with fn((ν x)P) ⊆ A. By Φ(A, (ν x)P, ℓ, Q′) either

Case 6a there exists x̂ 6∈ A ∪ fn(ℓ) ∪ (fn(P) − x) and Q̂ such that A, x̂ ⊢

{x̂/x}P
ℓ

−→ Q̂ and Q′ ≡ (ν x̂)Q̂. By ≡ an equivalence we have Q ≡
(ν x̂)Q̂, so clause 6a holds.

Case 6b there exists y, o, v, Q̂ and x̂ 6∈ A ∪ fn(y, o) ∪ (fn(P) − x) such that

ℓ = yov, A, x̂ ⊢ {x̂/x}P
yov
−→ Q̂, x̂ ∈ fn(v), ¬mv(o) and Q′ ≡ Q̂. By ≡ an

equivalence we have Q ≡ Q̂, so clause 6b holds.

Case 6c there exists y, o, v, Q̂ and x̂ 6∈ A ∪ fn(o) ∪ (fn(P) − x) such that

ℓ = yov, A, x̂ ⊢ {x̂/x}P
yov
−→ Q̂, x̂ ∈ fn(y, v), mv(o) and Q′ ≡ Q̂. By ≡ an

equivalence we have Q ≡ Q̂, so clause 6c holds.

The cases for all other rules are vacuous.

2

Reductions Imply Transitions

Take the size of a derivation of a structural congruence to be number of instances of
inference rules contained in it.

Lemma 17 If P ′ ≡ P and {v/p}P is defined then {v/p}P ′ is defined and {v/p}P ′ ≡
{v/p}P . Moreover, for any derivation of P ′ ≡ P there is a derivation of the same size of
{v/p}P ′ ≡ {v/p}P .

Proof Obvious. 2

Proposition 18 If P ′ ≡ P then A ⊢ P ′ ℓ
−→ Q iff A ⊢ P

ℓ
−→ Q.

Proof Induction on the size of derivation of P ′ ≡ P . In symmetric cases we show only
the right-to-left direction of the conclusion.

(Struct Cong Refl) By the reflexivity of iff.

26

(Struct Cong Sym) By the symmetry of iff.

(Struct Cong Tran) By the induction hypothesis and transitivity of iff.

(Struct Cong Input) Consider P ′ ≡ P and A ⊢ xιp.P
ℓ

−→ Q. By Lemma 16.2, there
exists v such that fn(xιp.P) ⊆ A, ℓ = xιv, {v/p}P is defined and Q ≡ {v/p}P .
Using Lemma 10, fn(xιp.P ′) = fn(xιp.P). By Lemma 17, {v/p}P ′ is defined and

{v/p}P ′ ≡ {v/p}P , so Q ≡ {v/p}P ′. Finally by Lemma 16.2, A ⊢ xιp.P ′ ℓ
−→ Q.

(Struct Cong Repl) Consider P ′ ≡ P and A ⊢ !xιp.P
ℓ

−→ Q. By Lemma 16.3 there
exists v such that fn(! xιp.P) ⊆ A, ℓ = xιv, {v/p}P is defined and Q ≡ !xιp.P |
{v/p}P . Using Lemma 10, fn(!xιp.P ′) = fn(!xιp.P). By Lemma 17, {v/p}P ′ is
defined and {v/p}P ′ ≡ {v/p}P , so Q ≡ !xιp.P ′ | {v/p}P ′. Finally by Lemma 16.3,

A ⊢ xιp.P ′ ℓ
−→ Q.

(Struct Cong Box) Consider P ′ ≡ P and A ⊢ n[P]
ℓ

−→ Q. By Lemma 16.4 one of the
following hold:

Case 16.4a there exist x, v, and P̂ such that n ∈ A, ℓ = τ , A ⊢ P
x↑v
−→ P̂ , and

Q ≡ (ν fn(x, v) − A)(xnv | n[P̂]). By the inductive hypothesis A ⊢ P ′ x↑v
−→ P̂ .

By Lemma 16.4 A ⊢ n[P ′]
ℓ

−→ Q

Case 16.4b there exist x and v such that fn(n[P]) ⊆ A, ℓ = xnv and Q ≡

n[x↑v | P]. Using Lemma 10, fn(n[P ′]) = fn(n[P]). Clearly n[x↑v | P] ≡

n[x↑v | P ′], so Q ≡ n[x↑v | P ′]. Finally by Lemma 16.4, A ⊢ n[P ′]
ℓ

−→ Q.

Case 16.4c there exists P̂ such that n ∈ A, ℓ = τ , A ⊢ P
τ

−→ P̂ , and Q ≡ n[P̂].

By the inductive hypothesis A ⊢ P ′ ℓ
−→ P̂ , so by Lemma 16.4, A ⊢ n[P ′]

ℓ
−→

Q.

(Struct Cong Par) Consider P ′ ≡ P , Q′ ≡ Q and A ⊢ P | Q
ℓ

−→ R. By Lemma 16.5
one of the following holds.

Case 16.5a there exists P̂ such that fn(Q) ⊆ A, A ⊢ P
ℓ

−→ P̂ and R ≡ P̂ | Q. By

Lemma 10, fn(Q′) = fn(Q). By the inductive hypothesis A ⊢ P ′ ℓ
−→ P̂ and

clearly P̂ | Q ≡ P̂ | Q′, so by Lemma 16.5, A ⊢ P ′ | Q′ ℓ
−→ R.

Case 16.5b there exists x, γ, v, P̂ and Q̂ such that ℓ = τ , A ⊢ P
xγv
−→ P̂ , A ⊢

Q
xγv
−→ Q̂, and R ≡ (ν fn(x, v) − A)(P̂ | Q̂). By the induction hypothesis

A ⊢ P ′ xγv
−→ P̂ and A ⊢ Q′ xγv

−→ Q̂. By Lemma 16.5, A ⊢ P ′ | Q′ ℓ
−→ R.

or symmetric cases.

(Struct Cong Res) Consider P ′ ≡ P and A ⊢ (ν x)P
ℓ

−→ Q. By Lemma 16.6 one of
the following holds.

Case 16.6a there exists x̂ 6∈ A ∪ fn(ℓ) ∪ (fn(P) − x) and Q̂ such that A, x̂ ⊢

{x̂/x}P
ℓ

−→ Q̂ and Q ≡ (ν x̂)Q̂. By Lemma 17 {x̂/x}P ′ ≡ {x̂/x}P (with a

derivation of the same size). By the induction hypothesis A, x̂ ⊢ {x̂/x}P ′ ℓ
−→

Q̂. By Lemma 16.6 A ⊢ (ν x)P ′ ℓ
−→ Q.

27

Case 16.6b there exists y, o, v, Q̂ and x̂ 6∈ A ∪ fn(y, o) ∪ (fn(P) − x) such

that ℓ = yov, A, x̂ ⊢ {x̂/x}P
yov
−→ Q̂, x̂ ∈ fn(v), ¬mv(o) and Q ≡ Q̂. By

Lemma 17 {x̂/x}P ′ ≡ {x̂/x}P , with a derivation of the same size. By the in-

duction hypothesis A, x̂ ⊢ {x̂/x}P ′ yov
−→ Q̂. By Lemma 10 fn(P ′) = fn(P), so

x̂ 6∈ A ∪ fn(y, o) ∪ (fn(P ′) − x). By Lemma 16.6, A ⊢ (ν x)P ′ ℓ
−→ Q.

Case 16.6c there exists y, o, v, Q̂ and x̂ 6∈ A ∪ fn(o) ∪ (fn(P) − x) such that

ℓ = yov, A, x̂ ⊢ {x̂/x}P
yov
−→ Q̂, x̂ ∈ fn(y, v), mv(o) and Q ≡ Q̂. By Lemma 17

{x̂/x}P ′ ≡ {x̂/x}P (with a derivation of the same size). By the induction

hypothesis A, x̂ ⊢ {x̂/x}P ′ yov
−→ Q̂. By Lemma 10 fn(P ′) = fn(P), so x̂ 6∈

A ∪ fn(o) ∪ (fn(P ′) − x). By Lemma 16.6 A ⊢ (ν x)P ′ ℓ
−→ Q.

(Struct Par Nil), (Struct Par Comm), (Struct Par Assoc), (Struct Res Res)
These should be straightforward. We check the other two axioms in detail.

(Struct Res Par) (ν x)(P | Q) ≡ P | (ν x)Q where x 6∈ fn(P). In the following, we
use the fact {x̂/x}P = P since x 6∈ fn(P), and the fact that (ν x)Q = (ν x̂){x̂/x}Q
when x̂ 6∈ fn(Q) − x. The proofs in the first part will yield results of the form

A ⊢ P | (ν x̂){x̂/x}Q
ℓ

−→ R′ with R′ ≡ R, thus we get A ⊢ P | (ν x)Q
ℓ

−→ R by an
application of (Trans Struct Right).

Consider A ⊢ (ν x)(P | Q)
ℓ

−→ R. By Lemma 16.6 this holds iff one of the following
holds:

Case 16.6a (Trans Res-1) there exists x̂ 6∈ A ∪ fn(ℓ) ∪ (fn((P | Q)) − x) and R̂

such that A, x̂ ⊢ {x̂/x}(P | Q)
ℓ

−→ R̂ and R ≡ (ν x̂)R̂. By Lemma 16.5 this
transition holds iff one of the following holds:

Case 16.5a (Trans Par)[Left] there exists P̂ such that fn({x̂/x}Q) ⊆ A, x̂,

A, x̂ ⊢ {x̂/x}P
ℓ

−→ P̂ and R̂ ≡ P̂ | {x̂/x}Q. It follows that A, x̂ ⊢

P
ℓ

−→ P̂ . By Lemma 14, A ⊢ P
ℓ

−→ P̂ . By (Trans Par), we get A ⊢

P | (ν x̂){x̂/x}Q
ℓ

−→ P̂ | (ν x̂){x̂/x}Q. By Lemma 11 x̂ 6∈ fn(P̂). By (Trans

Struct Right), we obtain A ⊢ P | (ν x̂){x̂/x}Q
ℓ

−→ (ν x̂)(P̂ | {x̂/x}Q).

Case 16.5a′ (Trans Par)[Right] there exists Q̂ such that fn({x̂/x}P) ⊆ A, x̂,

A, x̂ ⊢ {x̂/x}Q
ℓ

−→ Q̂ and R̂ ≡ Q̂ | {x̂/x}P . By (Trans Res-1) and the

fact that x̂ 6∈ fn(ℓ), we get A ⊢ (ν x̂){x̂/x}Q
ℓ

−→ (ν x̂)Q̂. By (Trans

Par)[Right], we get A ⊢ P | (ν x̂){x̂/x}Q
ℓ

−→ P | (ν x̂)Q̂. By the fact that

x̂ 6∈ fn(P) and (Trans Struct Right), we get A ⊢ P | (ν x̂){x̂/x}Q
ℓ

−→
(ν x̂)(P | Q̂).

Case 16.5b (Trans Comm) there exists z, γ, v, P̂ and Q̂ such that ℓ = τ ,

A, x̂ ⊢ {x̂/x}P
zγv
−→ P̂ , A, x̂ ⊢ {x̂/x}Q

zγv
−→ Q̂, and R̂ ≡ (ν fn(z, v)−A, x̂)(P̂ |

Q̂). By x̂ 6∈ fn({x̂/x}P) and Lemma 11.3, x̂ 6∈ fn(zγv). By x̂ 6∈ fn(zγv)

and (Trans Res-1), A ⊢ (ν x̂){x̂/x}Q
zγv
−→ (ν x̂)Q̂. By the fact that x̂ 6∈

fn(P, zγv) and Lemma 14, we get A ⊢ P
zγv
−→ P̂ . By (Trans Comm),

A ⊢ P | (ν x̂){x̂/x}Q
τ

−→ (ν fn(z, v) − A)(P̂ | (ν x̂)Q̂). By Lemma 11.2
x̂ 6∈ fn(P̂), so we may calculate (ν fn(z, v)−A)(P̂ | (ν x̂)Q̂) ≡ (ν fn(z, v)−
A, x̂)(ν x̂)(P̂ | Q̂) ≡ R.

28

Case 16.5b′ (Trans Comm) there exists z, γ, v, Q̂ and P̂ such that ℓ = τ ,

A, x̂ ⊢ {x̂/x}Q
zγv
−→ Q̂, A, x̂ ⊢ {x̂/x}P

zγv
−→ P̂ , and R̂ ≡ (ν fn(z, v)−A, x̂)(Q̂ |

P̂). There are some cases to consider:

Case γ = ι By Lemma 11.(6,7) x̂ 6∈ fn(z, γ).

Case x̂ 6∈ fn(v) By Lemma 14 A ⊢ P
zγv
−→ P̂ . By (Res-1) A ⊢

(ν x̂){x̂/x}Q
zγv
−→ (ν x̂)Q̂. By (Comm) we have A ⊢ P | (ν x̂){x̂/x}Q

τ
−→

(ν fn(z, v) − A)(P̂ | (ν x̂)Q̂). By Lemma 11.2 x̂ 6∈ fn(P̂), so (ν fn(z, v)−
A)(P̂ | (ν x̂)Q̂) ≡ (ν x̂)(ν fn(z, v) − A, x̂)(P̂ | Q̂).

Case x̂ ∈ fn(v) By Lemma 15.1 A ⊢ P
zγv
−→ P̂ . By (Res-2) A ⊢

(ν x̂){x̂/x}Q
zγv
−→ Q̂. By (Comm) we have

A ⊢ P | (ν x̂){x̂/x}Q
τ

−→ (ν fn(z, v) − A)(P̂ | Q̂).

Clearly (ν fn(z, v) − A)(P̂ | Q̂) ≡ (ν x̂)(ν fn(z, v) − A, x̂)(P̂ | Q̂).

Case γ = n By Lemma 11.6 x̂ 6∈ fn(γ).

Case x̂ 6∈ fn(z, v) Exactly as the x̂ 6∈ fn(v) case above.

Case x̂ ∈ fn(z, v) By Lemma 15.2 A ⊢ P
zγv
−→ P̂ . By (Res-2) A ⊢

(ν x̂){x̂/x}Q
zγv
−→ Q̂. By (Comm) we have

A ⊢ P | (ν x̂){x̂/x}Q
τ

−→ (ν fn(z, v) − A)(P̂ | Q̂).

Clearly (ν fn(z, v) − A)(P̂ | Q̂) ≡ (ν x̂)(ν fn(z, v) − A, x̂)(P̂ | Q̂).

Case 16.6b (Trans Res-2-nmv) there exists y, o, v, R̂ and x̂ 6∈ A∪fn(y, o)∪(fn((P |

Q))− x) such that ℓ = yov, A, x̂ ⊢ {x̂/x}(P | Q)
yov
−→ R̂, x̂ ∈ fn(v), ¬mv(o) and

R ≡ R̂. By Lemma 16.5 either one of the following holds:

Case 16.5a there exists P̂ such that fn({x̂/x}Q) ⊆ A, x̂, A, x̂ ⊢ {x̂/x}P
yov
−→ P̂

and R̂ ≡ P̂ | {x̂/x}Q. This leads to a contradiction, as by Lemma 11
x ∈ fn(P).

Case 16.5a′ there exists Q̂ such that fn({x̂/x}P) ⊆ A, x̂, A, x̂ ⊢ {x̂/x}Q
yov
−→

Q̂ and R̂ ≡ Q̂ | {x̂/x}P . We apply (Trans Res-2-nmv) to get A ⊢

(ν x̂){x̂/x}Q
yov
−→ Q̂. By x̂ 6∈ fn(P), we can apply (Trans Par)[Right]

to obtain A ⊢ P | (ν x̂){x̂/x}Q
yov
−→ P | Q̂ ≡ R.

Case 16.6c (Trans Res-2-mv) there exists y, o, v, R̂ and x̂ 6∈ A∪ fn(o) ∪ (fn((P |

Q)) − x) such that ℓ = yov, A, x̂ ⊢ {x̂/x}(P | Q)
yov
−→ R̂, x̂ ∈ fn(y, v), mv(o)

and R ≡ R̂. By Lemma 16.5 either one of the following holds:

Case 16.5a there exists P̂ such that fn({x̂/x}Q) ⊆ A, x̂, A, x̂ ⊢ {x̂/x}P
yov
−→ P̂

and R̂ ≡ P̂ | {x̂/x}Q. This leads to a contradiction, as by Lemma 11
x ∈ fn(P).

Case 16.5a′ there exists Q̂ such that fn({x̂/x}P) ⊆ A, x̂, A, x̂ ⊢ {x̂/x}Q
yov
−→ Q̂

and R̂ ≡ Q̂ | {x̂/x}P . By (Trans Res-2-mv) and the facts that x̂ ∈

fn(y, v) − fn(o) and mv(o), we get A ⊢ (ν x̂){x̂/x}Q
yov
−→ Q̂. By (Trans

Par)[Right], we get A ⊢ P | (ν x̂){x̂/x}Q
yov
−→ P | Q̂.

Now consider A ⊢ P | (ν x)Q
ℓ

−→ R. By Lemma 16.5 this transition holds iff one
of the following holds.

29

Case 16.5a (Trans Par)[Left] there exists P̂ such that fn((ν x)Q) ⊆ A, A ⊢

P
ℓ

−→ P̂ and R ≡ P̂ | (ν x)Q. Take x̂ such that x̂ 6∈ A∪ fn(ℓ)∪ (fn(P, Q)−x).

By x̂ 6∈ A ∪ fn(ℓ) and Lemma 14, A, x̂ ⊢ P
ℓ

−→ P̂ . By (Trans Par), A, x̂ ⊢

P | {x̂/x}Q
ℓ

−→ P̂ | {x̂/x}Q. By x̂ 6∈ ℓ and (Trans Res-1), A ⊢ (ν x̂)(P | {x̂/x}Q)
ℓ

−→
(ν x̂)(P̂ | {x̂/x}Q). Since x̂ 6∈ fn(P̂), (ν x̂)(P̂ | {x̂/x}Q) ≡ R.

Case 16.5a′ (Trans Par)[Right] there exists Q̂ such that fn(P) ⊆ A, A ⊢ (ν x)Q
ℓ

−→
Q̂ and R ≡ Q̂ | P . By Lemma 16.6 this transition holds iff one of the following
holds.

Case 16.6a (Trans Res-1) there exists x̂ 6∈ A ∪ fn(ℓ) ∪ (fn(Q) − x) and
ˆ̂
Q

such that A, x̂ ⊢ {x̂/x}Q
ℓ

−→ ˆ̂
Q and Q̂ ≡ (ν x̂)

ˆ̂
Q. By (Trans Par)[Right],

we have A, x̂ ⊢ P | {x̂/x}Q
ℓ

−→ P | ˆ̂
Q. By x̂ 6∈ fn(ℓ) and (Trans Res-1),

we get A ⊢ (ν x̂)(P | {x̂/x}Q)
ℓ

−→ (ν x̂)(P | ˆ̂
Q). By x̂ 6∈ fn(P) and (Trans

Struct Right), we obtain A ⊢ (ν x̂)(P | {x̂/x}Q)
ℓ

−→ P | (ν x̂)
ˆ̂
Q.

Case 16.6b (Trans Res-2-nmv) there exists y, o, v,
ˆ̂
Q and x̂ 6∈ A∪ fn(y, o)∪

(fn(Q) − x) such that ℓ = yov, A, x̂ ⊢ {x̂/x}Q
yov
−→ ˆ̂

Q, x̂ ∈ fn(v), ¬mv(o)

and Q̂ ≡ ˆ̂
Q. By (Trans Par)[Right], we have A, x̂ ⊢ P | {x̂/x}Q

ℓ
−→ P | ˆ̂

Q.
By ¬mv(o), x̂ ∈ fn(v) − fn(y, o) and (Trans Res-2-nmv), we get A ⊢

(ν x̂)(P | {x̂/x}Q)
ℓ

−→ P | ˆ̂
Q.

Case 16.6c (Trans Res-2-mv) there exists y, o, v,
ˆ̂
Q and x̂ 6∈ A ∪ fn(o) ∪

(fn(Q) − x) such that ℓ = yov, A, x̂ ⊢ {x̂/x}Q
yov
−→ ˆ̂

Q, x̂ ∈ fn(y, v), mv(o)

and Q̂ ≡ ˆ̂
Q. By (Trans Par)[Right], we have A, x̂ ⊢ P | {x̂/x}Q

ℓ
−→

P | ˆ̂
Q. By mv(o), x̂ ∈ fn(y, v) − fn(o) and (Trans Res-2-mv), we get

A ⊢ (ν x̂)(P | {x̂/x}Q)
ℓ

−→ P | ˆ̂
Q.

Case 16.5b (Trans Comm) there exists z, γ, v, P̂ and Q̂ such that ℓ = τ , A ⊢

P
zγv
−→ P̂ , A ⊢ (ν x)Q

zγv
−→ Q̂, and R ≡ (ν fn(z, v)−A)(P̂ | Q̂). By Lemma 16.6

there exists x̂ 6∈ A∪fn(zγv)∪(fn(Q)−x) and
ˆ̂
Q̂ such that A, x̂ ⊢ {x̂/x}Q

zγv
−→

ˆ̂
Q̂

and Q̂ ≡ (ν x̂)
ˆ̂
Q̂. By Lemma 14 and x̂ 6∈ A ∪ fn(zγv), we get A, x̂ ⊢ P

zγv
−→

P̂ . By (Trans Comm), A, x̂ ⊢ P | {x̂/x}Q
τ

−→ (ν fn(z, v) − A, x̂)(P̂ |
ˆ̂
Q̂).

By (Tran Res-1) and x̂ 6∈ fn(z, v), we obtain A ⊢ (ν x̂)(P | {x̂/x}Q)
τ

−→

(ν x̂)(ν fn(z, v) − A)(P̂ |
ˆ̂
Q̂), hence A ⊢ (ν x̂)(P | {x̂/x}Q)

τ
−→ (ν fn(z, v) − A)(P̂ | Q̂).

Case 16.5b′ (Trans Comm) there exists z, γ, v, Q̂ and P̂ such that ℓ = τ ,

A ⊢ (ν x)Q
zγv
−→ Q̂, A ⊢ P

zγv
−→ P̂ , and R ≡ (ν fn(z, v) − A)(Q̂ | P̂). By

Lemma 16.6 the (ν x)Q transition holds iff one of the following holds.

Case 16.6a (Trans Res-1) there exists x̂ 6∈ A ∪ fn(zγv) ∪ (fn(Q) − x) and
ˆ̂
Q such that A, x̂ ⊢ {x̂/x}Q

zγv
−→ ˆ̂

Q and Q̂ ≡ (ν x̂)
ˆ̂
Q. By Lemma 14

and x̂ 6∈ A ∪ fn(zγv) we have A, x̂ ⊢ P
zγv
−→ P̂ . By (Trans Comm),

A, x̂ ⊢ P | {x̂/x}Q
τ

−→ (ν fn(z, v) − A, x̂)(P̂ | ˆ̂
Q). By (Tran Res-1) and x̂ 6∈

fn(z, v), we obtain A ⊢ (ν x̂)(P | {x̂/x}Q)
τ

−→ (ν x̂)(ν fn(z, v) − A)(P̂ | ˆ̂
Q).

Case 16.6b (Trans Res-2-nmv) there exists z, γ, v,
ˆ̂
Q and x̂ 6∈ A∪ fn(z, γ)∪

(fn(Q)−x) such that zγv = zγv, A, x̂ ⊢ {x̂/x}Q
zγv
−→ ˆ̂

Q, x̂ ∈ fn(v), ¬mv(γ)

30

and Q̂ ≡ ˆ̂
Q. By Lemma 15.1 and γ 6= n, A, x̂ ⊢ P

zγv
−→ P̂ . By (Trans

Comm), A, x̂ ⊢ P | {x̂/x}Q
τ

−→ (ν fn(z, v) − A, x̂)(P̂ | ˆ̂
Q). By (Tran Res-

1) we obtain A ⊢ (ν x̂)(P | {x̂/x}Q)
τ

−→ (ν x̂)(ν fn(z, v) − A, x̂)(P̂ | ˆ̂
Q),

hence as x̂ ∈ fn(v) A ⊢ (ν x̂)(P | {x̂/x}Q)
τ

−→ (ν fn(z, v) − A)(P̂ | ˆ̂
Q).

Case 16.6c (Trans Res-2-mv) there exists z, γ, v,
ˆ̂
Q and x̂ 6∈ A ∪ fn(γ) ∪

(fn(Q)−x) such that zγv = zγv, A, x̂ ⊢ {x̂/x}Q
zγv
−→ ˆ̂

Q, x̂ ∈ fn(z, v), mv(γ)

and Q̂ ≡ ˆ̂
Q. By mv(γ) we have γ = n for some n. By Lemma 15.2 A, x̂ ⊢

P
zγv
−→ P̂ . By (Trans Comm), A, x̂ ⊢ P | {x̂/x}Q

τ
−→ (ν fn(z, v) − A, x̂)(P̂ | ˆ̂

Q).

By (Tran Res-1) A ⊢ (ν x̂)(P | {x̂/x}Q)
τ

−→ (ν x̂)(ν fn(z, v) − A, x̂)(P̂ | ˆ̂
Q),

hence as x̂ ∈ fn(z, v) A ⊢ (ν x̂)(P | {x̂/x}Q)
τ

−→ (ν fn(z, v) − A)(P̂ | ˆ̂
Q).

(Struct Res Box) (ν x)n[P] ≡ n[(ν x)P] where x 6= n. Consider A ⊢ (ν x)n[P]
ℓ

−→ Q.
By Lemma 16.6 this holds iff one of the following holds.

Case 16.6a (Trans Res-1) there exists x̂ 6∈ A ∪ fn(ℓ) ∪ (fn(n[P]) − x) and Q̂ such

that A, x̂ ⊢ {x̂/x}n[P]
ℓ

−→ Q̂ and Q ≡ (ν x̂)Q̂. By x 6= n we have {x̂/x}n = n,

so we have A, x̂ ⊢ n[{x̂/x}P]
ℓ

−→ Q̂. By Lemma 16.4 this transition exists iff
one of the following hold:

Case 16.4a (Trans Box-1) there exist z, v, and P̂ such that n ∈ A, x̂, ℓ = τ ,

A, x̂ ⊢ {x̂/x}P
z↑v
−→ P̂ , and Q̂ ≡ (ν fn(z, v) − A, x̂)(znv | n[P̂]). There are

two cases to consider:

Case x̂ 6∈ fn(z↑v) By (Trans Res-1) and the fact that x̂ 6∈ fn(z↑v), we

obtain A ⊢ (ν x̂){x̂/x}P
z↑v
−→ (ν x̂)P̂ . By (Trans Box-1), we obtain

A ⊢ n[(ν x̂){x̂/x}P]
τ

−→ (ν fn(z, v) − A)(znv | n[(ν x̂)P̂]). Since x̂ 6∈
fn(znv) we have (ν fn(z, v) − A)(znv | n[(ν x̂)P̂]) ≡ (ν x̂)(ν fn(z, v) −
A, x̂)(znv | n[P̂]).

Case x̂ ∈ fn(z↑v) By (Trans Res-2), mv(↑), and x̂ ∈ fn(z, v) − fn(↑), we

obtain A ⊢ (ν x̂){x̂/x}P
z↑v
−→ P̂ . By (Trans Box-1), we obtain A ⊢

n[(ν x̂){x̂/x}P]
τ

−→ (ν fn(z, v) − A)(znv | n[P̂]). Since x̂ ∈ fn(z, v) −
A, we get (ν fn(z, v) − A)(znv | n[P̂]) ≡ (ν x̂)(ν fn(z, v) − A, x̂)(znv |
n[P̂]).

Case 16.4b (Trans Box-2) there exist z and v such that fn(n[{x̂/x}P]) ⊆

A, x̂, ℓ = znv and Q̂ ≡ n[z↑v | {x̂/x}P]. By (Trans Box-2), A ⊢ n[(ν x̂){x̂/x}P]
znv
−→

n[z↑v | (ν x̂){x̂/x}P]. Since x̂ 6∈ fn(znv), we have n[z↑v | (ν x̂){x̂/x}P] ≡

(ν x̂)n[z↑v | {x̂/x}P].

Case 16.4c (Trans Box-3) there exists P̂ such that n ∈ A, x̂, ℓ = τ , A, x̂ ⊢

{x̂/x}P
τ

−→ P̂ , and Q̂ ≡ n[P̂]. By (Trans Res-1), A ⊢ (ν x̂){x̂/x}P
τ

−→
(ν x̂)P̂ . By (Trans Box-3), (Trans Struct Right), and x̂ 6= n, A ⊢

n[(ν x̂){x̂/x}P]
τ

−→ (ν x̂)n[P̂].

Case 16.6b (Trans Res-2-nmv) there exists y, o, v, Q̂ and x̂ 6∈ A ∪ fn(y, o) ∪

(fn(n[P]) − x) such that ℓ = yov, A, x̂ ⊢ {x̂/x}n[P]
yov
−→ Q̂, x̂ ∈ fn(v), ¬mv(o)

and Q ≡ Q̂. This leads to a contradiction as no such term has any output
transitions.

31

Case 16.6c (Trans Res-2-mv) there exists y, o, v, Q̂ and x̂ 6∈ A∪fn(o)∪(fn(n[P])−

x) such that ℓ = yov, A, x̂ ⊢ {x̂/x}n[P]
yov
−→ Q̂, x̂ ∈ fn(y, v), mv(o) and Q ≡ Q̂.

This leads to a contradiction as no such term has any output transitions.

Now consider A ⊢ n[(ν x)P]
ℓ

−→ Q. By Lemma 16.4 this holds iff one of the
following hold:

Case 16.4a (Trans Box-1) there exist z, v, and P̂ such that n ∈ A, ℓ = τ ,

A ⊢ (ν x)P
z↑v
−→ P̂ , and Q ≡ (ν fn(z, v)−A)(znv | n[P̂]). By Lemma 16.6 this

transition holds iff one of the following holds:

Case 16.6a (Trans Res-1) there exists x̂ 6∈ A ∪ fn(z↑v) ∪ (fn(P) − x) and

Q̂ such that A, x̂ ⊢ {x̂/x}P
z↑v
−→ Q̂ and P̂ ≡ (ν x̂)Q̂. By (Trans Box-1),

we have A, x̂ ⊢ n[{x̂/x}P]
τ

−→ (ν fn(z, v) − A, x̂)(znv | n[Q̂]). By (Trans

Res-1), A ⊢ (ν x̂)n[{x̂/x}P]
τ

−→ (ν x̂)(ν fn(z, v) − A, x̂)(znv | n[Q̂]). Since
x̂ 6∈ fn(z↑v) and x̂ 6= n, we obtain (ν x̂)(ν fn(z, v) − A, x̂)(znv | n[Q̂]) ≡
(ν fn(z, v) − A)(znv | n[(ν x̂)Q̂]).

Case 16.6b (Trans Res-2-nmv) there exists z, ↑, v, Q̂ and x̂ 6∈ A ∪ fn(z, ↑

) ∪ (fn(P) − x) such that z↑v = z↑v, A, x̂ ⊢ {x̂/x}P
z↑v
−→ Q̂, x̂ ∈ fn(v),

¬mv(↑) and P̂ ≡ Q̂. This cannot hold, as mv(↑).

Case 16.6c (Trans Res-2-mv) there exists z, ↑, v, Q̂ and x̂ 6∈ A ∪ fn(↑) ∪

(fn(P)−x) such that z↑v = z↑v, A, x̂ ⊢ {x̂/x}P
z↑v
−→ Q̂, x̂ ∈ fn(z, v), mv(↑)

and P̂ ≡ Q̂. By (Trans Box-1), A, x̂ ⊢ n[{x̂/x}P]
τ

−→ (ν fn(z, v) − A, x̂)(znv | n[Q̂]).

By (Tran Res-1), A ⊢ (ν x̂)n[{x̂/x}P]
τ

−→ (ν x̂)(ν fn(z, v) − A, x̂)(znv | n[Q̂]).
Since x̂ ∈ fn(z, v) − A we obtain (ν x̂)(ν fn(z, v) − A, x̂)(znv | n[Q̂]) ≡
(ν fn(z, v) − A)(znv | n[Q̂]).

Case 16.4b (Trans Box-2) there exist z and v such that fn(n[(ν x)P]) ⊆ A,

ℓ = znv and Q ≡ n[z↑v | (ν x)P]. Take x̂ 6∈ A ∪ fn(znv), then by (Tran Box-

2), we obtain A, x̂ ⊢ n[{x̂/x}P]
znv
−→ n[z↑v | {x̂/x}P]. By (Trans Res-1), we get

A ⊢ (ν x̂)n[{x̂/x}P]
znv
−→ (ν x̂)n[z↑v | {x̂/x}P]. By (Trans Struct Right) and

x̂ 6∈ fn(n, z↑v), we obtain A ⊢ (ν x̂)n[{x̂/x}P]
znv
−→ n[z↑v | (ν x̂){x̂/x}P].

Case 16.4c (Trans Box-3) there exists
ˆ̂
Q such that n ∈ A, ℓ = τ , A ⊢ (ν x)P

τ
−→

ˆ̂
Q, and Q ≡ n[

ˆ̂
Q]. By Lemma 16.6 there exists x̂ 6∈ A ∪ (fn(P) − x) and P̂

such that A, x̂ ⊢ {x̂/x}P
τ

−→ P̂ and
ˆ̂
Q ≡ (ν x̂)P̂ . By (Trans Box-3), A, x̂ ⊢

n[{x̂/x}P]
τ

−→ n[P̂]. By (Trans Res-1), A ⊢ (ν x̂)n[{x̂/x}P]
τ

−→ (ν x̂)n[P̂]. By

(Trans Struct Right) and x 6= n, we obtain A ⊢ (ν x̂)n[{x̂/x}P]
τ

−→ n[(ν x̂)P̂].

2

Lemma 19 If fn(P) ⊆ A and P → Q then A ⊢ P
τ

−→ Q.

Proof Induction on derivations of P → Q. For the base cases we construct derivations
of τ transitions:

(Red Up)

32

A ⊢ x↑v
x↑v
−→ 0

(Trans Out)

A ⊢ x↑v | Q
x↑v
−→ 0 | Q

(Trans Par)

A ⊢ n[x↑v | Q]
τ

−→ (ν fn(x, v) − A)(xnv | n[0 | Q])
(Trans Box-1)

By the premise fn(n[x↑v | Q]) ⊆ A we have fn(x, v) ⊆ A, so using (Trans Struct

Right) we have A ⊢ n[x↑v | Q]
τ

−→ xnv | n[Q], the right hand side of which is
exactly the right hand side of (Red Up).

(Red Down)

A ⊢ xnv
xnv
−→ 0

(Trans Out)
x ∈ A

A ⊢ n[Q]
xnv
−→ n[x↑v | Q]

(Trans Box-2)

A ⊢ xnv | n[Q]
τ

−→ (ν fn(v) − A)(0 | n[x↑v | Q])
(Trans Comm)

By the premise fn(xnv | n[Q]) ⊆ A we have x ∈ A and also fn(v) ⊆ A, so using

(Trans Struct Right) we have A ⊢ xnv | n[Q]
τ

−→ n[x↑v | Q], the right hand side of
which is exactly the right hand side of (Red Down).

(Red Comm)

A ⊢ xιv
xιv
−→ 0

(Trans Out)

A ⊢ xιp.P
xιv
−→ {v/p}P

(Trans In)

A ⊢ xιv | xιp.P
τ

−→ (ν fn(v) − A)(0 | {v/p}P)
(Trans Comm)

The side condition {v/p}P defined for (Trans In) is ensured by the same condition
for (Red Comm). By the premise fn(xιv | xιp.P) ⊆ A we have fn(v) ⊆ A, so using

(Trans Struct Right) we have A ⊢ xιv | xιp.P
τ

−→ {v/p}P , the right hand side of
which is exactly the right hand side of (Red Comm).

(Red Repl)

A ⊢ xιv
xιv
−→ 0

(Trans Out)

!xιp.P
xιv
−→ !xιp.P | {v/p}P

(Trans Repl)

A ⊢ xιv | !xιp.P
τ

−→ (ν fn(v) − A)(0 | (!xιp.P | {v/p}P))
(Trans Comm)

The side condition {v/p}P defined for (Trans Repl) is ensured by the same condition
for (Red Repl). By the premise fn(xιv | !xιp.P) ⊆ A we have fn(v) ⊆ A, so using

(Trans Struct Right) we have A ⊢ xιv | !xιp.P
τ

−→ !xιp.P | {v/p}P , the right hand
side of which is exactly the right hand side of (Red Repl).

(Red Par), (Red Res) and (Red Box) require straightforward uses of induction hy-
pothesis, using (Trans Par), (Trans Res-1) and (Trans Box-3).

(Red Struct) By Lemma 10, fn(P ′) ⊆ A. By the inductive hypothesis, A ⊢ P ′ τ
−→ Q′.

By Proposition 18, A ⊢ P
τ

−→ Q′. By (Tran-Struct-Right), A ⊢ P
τ

−→ Q.

2

33

Transitions Imply Reductions

Lemma 20 If A ⊢ P
zov
−→ P ′ then P ≡ (ν fn(z, v) − A)(zov | P ′)

Proof Induction on derivation of A ⊢ P
zov
−→ P ′.

(Trans Out) Obvious.

(Trans Par) By the induction hypothesis, P ≡ (ν fn(z, v) − A)(zov | P ′), so

P | Q ≡ ((ν fn(z, v) − A)(zov | P ′)) | Q
≡ (ν fn(z, v) − A)(zov | P ′ | Q) (as by fn(P | Q) ⊆ A we have fn(Q) ⊆ A)

(Trans Res-1) By the induction hypothesis P ≡ (ν fn(z, v) − (A, x))(zov | P ′), so

(ν x)P ≡ (ν x)(ν fn(z, v) − (A, x))(zov | P ′)
≡ (ν fn(z, v) − A)(zov | (ν x)P ′) (as x 6∈ fn(zov))

(Trans Res-2-nmv) By the induction hypothesis P ≡ (ν fn(z, v) − (A, x))(zov | P ′),
so

(ν x)P ≡ (ν x)(ν fn(z, v) − (A, x))(zov | P ′)
≡ (ν fn(z, v) − A)(zov | P ′) (as x ∈ fn(v) − fn(z, o))

(Trans Res-2-mv) By the induction hypothesis P ≡ (ν fn(x, v) − (A, x))(xov | P ′), so

(ν x)P ≡ (ν x)(ν fn(x, v) − (A, x))(xov | P ′)
≡ (ν fn(x, v) − A)(xov | P ′)

(Trans Struct-Right) By the induction hypothesis.

All other cases are vacuous.

2

Lemma 21 If A ⊢ Q
xιv
−→ Q′ then there exist B, p, Q1 and Q2 such that B ∩ (A ∪

fn(xιv)) = {} and either Q ≡ (ν B)(xιp.Q1 | Q2) and Q′ ≡ (ν B)({v/p}Q1 | Q2) or
Q ≡ (ν B)(! xιp.Q1 | Q2) and Q′ ≡ (ν B)({v/p}Q1 | !xιp.Q1 | Q2).

Proof Induction on derivation of A ⊢ Q
xιv
−→ Q′.

(Trans In), (Trans Repl) Obvious.

(Trans Par) Consider A ⊢ Q | P
xιv
−→ Q′ | P . By the induction hypothesis there exist

B, p, Q1 and Q2 such that B ∩ (A ∪ fn(xιv)) = {} and either Q ≡ (ν B)(xιp.Q1 |
Q2) and Q′ ≡ (ν B)({v/p}Q1 | Q2) or Q ≡ (ν B)(! xιp.Q1 | Q2) and Q′ ≡
(ν B)({v/p}Q1 | !xιp.Q1 | Q2).

Consider the first disjunct (the second is similar). Taking Q̂2 = Q2 | P we have

Q | P ≡ (ν B)(xιp.Q1 | Q2) | P

≡ (ν B)(xιp.Q1 | Q̂2)
Q′ | P ≡ (ν B)({v/p}Q1 | Q2) | P

≡ (ν B)({v/p}Q1 | Q̂2)

34

(Trans Res-1) Consider A ⊢ (ν z)Q
xιv
−→ (ν z)Q′ with z 6∈ A∪fn(xιv). By the induction

hypothesis there exist B, p, Q1 and Q2 such that B∩(A, z∪fn(xιv)) = {} and either
Q ≡ (ν B)(xιp.Q1 | Q2) and Q′ ≡ (ν B)({v/p}Q1 | Q2) or Q ≡ (ν B)(! xιp.Q1 | Q2)
and Q′ ≡ (ν B)({v/p}Q1 | !xιp.Q1 | Q2).

Consider the first disjunct (the second is similar). Taking B̂ = B, z we have

(ν z)Q ≡ (ν z)(ν B)(xιp.Q1 | Q2)

≡ (ν B̂)(xιp.Q1 | Q2)
(ν z)Q′ ≡ (ν z)(ν B)({v/p}Q1 | Q2)

≡ (ν B̂)({v/p}Q1 | Q2)

(Trans Struct Right) By the induction hypothesis.

All other cases are vacuous.

2

Lemma 22 If A ⊢ Q
xnv
−→ Q′ then there exist B, Q1 and Q2 such that B∩(A∪fn(xnv)) =

{}, Q ≡ (ν B)(n[Q1] | Q2) and Q′ ≡ (ν B)(n[(x↑v | Q1)] | Q2).

Proof Induction on derivation of A ⊢ Q
xnv
−→ Q′.

(Trans Box-2) Obvious.

(Trans Par) Consider A ⊢ Q | P
xnv
−→ Q′ | P . By the induction hypothesis there exist

B, Q1 and Q2 such that B ∩ (A ∪ fn(xnv)) = {}, Q ≡ (ν B)(n[Q1] | Q2) and

Q′ ≡ (ν B)(n[(x↑v | Q1)] | Q2).

Take Q̂2 = Q2 | P . We have

Q | P ≡ (ν B)(n[Q1] | Q2) | P
≡ (ν B)(n[Q1] | Q2 | P) (as fn(P) ⊆ A)

≡ (ν B)(n[Q1] | Q̂2)

Q′ | P ≡ (ν B)(n[(x↑v | Q1)] | Q2) | P

≡ (ν B)(n[(x↑v | Q1)] | Q2 | P) (as fn(P) ⊆ A)

≡ (ν B)(n[(x↑v | Q1)] | Q̂2)

(Trans Res-1) Consider A ⊢ (ν z)Q
xnv
−→ (ν z)Q′ with z 6∈ A∪fn(xnv). By the induction

hypothesis there exist B, Q1 and Q2 such that B ∩ (A, z ∪ fn(xnv)) = {}, Q ≡

(ν B)(n[Q1] | Q2) and Q′ ≡ (ν B)(n[(x↑v | Q1)] | Q2).

Let B̂ = B, z. We have

(ν z)Q ≡ (ν z)(ν B)(n[Q1] | Q2)

≡ (ν B̂)(n[Q1] | Q2)

(ν z)Q′ ≡ (ν z)(ν B)(n[(x↑v | Q1)] | Q2)

≡ (ν B̂)(n[(x↑v | Q1)] | Q2)

(Trans Struct Right) By the induction hypothesis.

All other cases are vacuous.

35

2

Lemma 23 If A ⊢ P
τ

−→ Q then P → Q.

Proof Induction on derivations of A ⊢ P
τ

−→ Q

(Trans Box-1) By Lemma 20 P ≡ (ν fn(x, v) − A)(x↑v | P ′), so

n[P] ≡ n[(ν fn(x, v) − A)(x↑v | P ′)]
≡ (ν fn(x, v) − A)(n[x↑v | P ′]) (by fn(n[P]) ⊆ A we have n ∈ A)
→ (ν fn(x, v) − A)(xnv | n[P ′]) (by (Red Up))

(Trans Box-3) By the induction hypothesis and (Red Box).

(Trans Par) By the induction hypothesis and (Red Par).

(Trans Comm) By Lemma 20 P ≡ (ν fn(x, v) −A)(xγv | P ′). By Lemma 11 x ∈ A so
P ≡ (ν fn(v) − A)(xγv | P ′).

Case γ = ι. By Lemma 21 there exist B, p, Q1 and Q2 such that B ∩ (A ∪
fn(xιv)) = {} and either Q ≡ (ν B)(xιp.Q1 | Q2) and Q′ ≡ (ν B)({v/p}Q1 | Q2) or
Q ≡ (ν B)(! xιp.Q1 | Q2) and Q′ ≡ (ν B)({v/p}Q1 | !xιp.Q1 | Q2). Consider the
first disjunct. We have

P | Q ≡ (ν fn(v) − A)(xγv | P ′) | (ν B)(xιp.Q1 | Q2)
≡ (ν fn(v) − A)(xγv | P ′ | (ν B)(xιp.Q1 | Q2)) (as fn(Q) ⊆ A)
≡ (ν fn(v) − A)(ν B)(xγv | P ′ | xιp.Q1 | Q2) (as (A ∪ fn(v)) ∩ B = {})
→ (ν fn(v) − A)(ν B)({v/p}Q1 | P ′ | Q2) (by Red Comm)
≡ (ν fn(v) − A)(P ′ | (ν B)({v/p}Q1 | Q2)) (as (A ∪ fn(v)) ∩ B = {})
≡ (ν fn(v) − A)(P ′ | Q′)

The second disjunct is similar.

Case γ = n. By Lemma 22 there exist B, Q1 and Q2 such that B∩ (A∪ fn(xnv)) =

{}, Q ≡ (ν B)(n[Q1] | Q2) and Q′ ≡ (ν B)(n[(x↑v | Q1)] | Q2). We have

P | Q ≡ (ν fn(v) − A)(xnv | P ′) | (ν B)(n[Q1] | Q2)
≡ (ν fn(v) − A)(xnv | P ′ | (ν B)(n[Q1] | Q2)) (as fn(Q) ⊆ A)
≡ (ν fn(v) − A)(ν B)(xnv | P ′ | n[Q1] | Q2) (as (A ∪ fn(v)) ∩ B = {})

→ (ν fn(v) − A)(ν B)(P ′ | n[x↑v | Q1] | Q2) (by Red Down)

≡ (ν fn(v) − A)(P ′ | (ν B)(n[(x↑v | Q1)] | Q2)) (as (A ∪ fn(v)) ∩ B = {})
≡ (ν fn(v) − A)(P ′ | Q′)

(Trans Res-1) By the induction hypothesis and (Red Res).

(Trans Struct Right) By the induction hypothesis and (Red Struct).

All other cases are vacuous.

2

Proof (of Theorem 1) We must show that if fn(P) ⊆ A then A ⊢ P
τ

−→ Q iff P → Q.
This is immediate from Lemmas 19 and 23 above. 2

36

B Other Proofs

We first give another transition-analysis lemma. This allows us to rename extruded
names in a label instead of in the source process term.

Lemma 24 If A ⊢ (ν N)P
ℓ

−→ Q, ℓ = y↑v, and A, N and M are pairwise disjoint finite
sets of names then there exists a partition N1, N2 of N , a process P ′, and

h :(fn(ℓ) − A)→(N − (A, N2, M))

injective such that

A, N ⊢ P
(1A+h)ℓ
−→ P ′

A ⊢ (ν N)P
(1A+h)ℓ
−→ (ν N2)P ′ ≡ (1A + h)Q

N2 = N − fn((1A + h)ℓ)

Proof Induction on N . For N = ∅ we have A ⊢ P
ℓ

−→ Q. Take any h :(fn(ℓ) −

A)→(N − (A, M)) injective. By Lemma 13 A ⊢ 1AP
(1A+h)ℓ
−→ (1A + h)Q. Now consider

A ⊢ (ν x)(ν N)P
ℓ

−→ Q with A, (N, x), and M pairwise disjoint. By Lemma 16.6 one of
the following cases hold.

Case 6a there exists x̂ 6∈ A∪fn(ℓ)∪(fn((ν N)P)−x) and Q̂ such that A, x̂ ⊢ {x̂/x}(ν N)P
ℓ

−→
Q̂ and Q ≡ (ν x̂)Q̂.

Take some

f : A, x̂→A, x
g :(fn(ℓ) − A, x̂)→N − (A, x, M)

injective with f the identity on A. By Lemma 13

A, x ⊢ (ν N)P
(f+g)ℓ
−→ (f + g)Q̂

By the induction hypothesis there exists a partition N ′
1, N

′
2 of N , a process P ′, and

h′ :(fn((f + g)ℓ) − (A, x))→(N − (A, x, N ′
2, M))

injective such that

A, x, N ⊢ P
(1A,x+h′)(f+g)ℓ

−→ P ′

A, x ⊢ (ν N)P
(1A,x+h′)(f+g)ℓ

−→ (ν N ′
2)P ′ ≡ (1A,x + h′)(f + g)Q̂

Now x̂ 6∈ fnℓ, so x 6∈ fn((f + g)ℓ), so x 6∈ fn((1A,x + h′)(f + g)ℓ), so by (Res-1)

A ⊢ (ν x)(ν N)P
(1A,x+h′)(f+g)ℓ

−→ (ν x)(ν N ′
2)P ′ ≡ (ν x)(1A,x + h′)(f + g)Q̂

Take N1 = N ′
1, N2 = N ′

2, x and h = h′g.

Case 6c there exists y, o, v, Q̂ and x̂ 6∈ A∪ fn(o) ∪ (fn((ν N)P)− x) such that ℓ = yov,

A, x̂ ⊢ {x̂/x}(ν N)P
yov
−→ Q̂, x̂ ∈ fn(y, v), mv(o) and Q ≡ Q̂.

Similarly, take some

f : A, x̂→A, x
g :(fn(ℓ) − A, x̂)→N − (A, x, M)

37

injective with f the identity on A. By Lemma 13

A, x ⊢ (ν N)P
(f+g)ℓ
−→ (f + g)Q̂

By the induction hypothesis there exists a partition N ′
1, N

′
2 of N , a process P ′, and

h′ :(fn((f + g)ℓ) − (A, x))→(N − (A, x, N ′
2, M))

injective such that

A, x, N ⊢ P
(1A,x+h′)(f+g)ℓ

−→ P ′

A, x ⊢ (ν N)P
(1A,x+h′)(f+g)ℓ

−→ (ν N ′
2)P ′ ≡ (1A,x + h′)(f + g)Q̂

Now here x̂ ∈ fnℓ, so x ∈ fn((f + g)ℓ), so x ∈ fn((1A,x + h′)(f + g)ℓ), so by (Res-2)

A ⊢ (ν x)(ν N)P
(1A,x+h′)(f+g)ℓ

−→ (ν N ′
2)P ′ ≡ (1A,x + h′)(f + g)Q̂

Take N1 = N ′
1, x, N2 = N ′

2 and h = {x/x̂} + h′g.

2

Explicit Characterisation

The simple security properties are proved using an explicit characterisation of the states
and labelled transitions of W1[P]. If N is a finite set of names, a is a name and A and
Q are processes define

[[a; N ;A; Q]]
def
= (ν N ∪ {a})

(

A
| a[Q]

| ! in↑y.in
a
y

| ! outay.out
↑
y

)

Say the 4-tuple a, N , A, Q is good if N , {a}, and {in, out} are pairwise disjoint, A is a
parallel composition of outputs of the forms

out
a
v, out

↑
v, in

a
v, xav where x 6∈ {out, a}

with a 6∈ fn(v) in each case, and Q is a process with a 6∈ fn(Q). Say a process P is good
if P ≡ [[a; N ;A; Q]] for some good a, N , A, Q.

Lemma 25 If a 6∈ fn(P) then W1[P] ≡ [[a; ∅; 0; P]], hence W1[P] is good.

Proof Straightforward. 2

We define a transition relation A ⊢ P
ℓ

⇀ Q as the least satisfying the following rules.

t1 A ⊢ [[a; N ;A; Q]]
in

↑
v

⇀ [[a; N ;A | in
a
v; Q]] fn(v) ∩ (N ∪ {a}) = ∅

t2 A ⊢ [[a; N ;A | in
a

v; Q]]
τ
⇀ [[a; N ;A; Q | in

↑
v]]

t4 A,N, a ⊢ Q
out

↑
v

−→ Q′ A ⊢ [[a; N ;A; Q]]
τ
⇀ [[a; N, fn(v) − (A, N, a);A | out

a
v; Q′]]

t5 A,N, a ⊢ Q
x
↑

v
−→ Q′ A ⊢ [[a; N ;A; Q]]

τ
⇀ [[a; N, fn(x, v) − (A, N, a);A | xav; Q′]]

t6 A ⊢ [[a; N ;A | out
a
v; Q]]

τ
⇀ [[a; N ;A | out

↑
v; Q]]

t7 A ⊢ [[a; N ;A | out
↑
v; Q]]

out
↑

v
⇀ [[a; N − fn(v);A; Q]]

t8 A,N, a ⊢ Q
τ

−→ Q′ A ⊢ [[a; N ;A; Q]]
τ
⇀ [[a; N ;A; Q′]]

38

A ⊢ P
ℓ

⇀ P ′ P ′ ≡ P ′′

A ⊢ P
ℓ

⇀ P ′′

For rule t5, we have a side condition that x 6= out. For all rules we have a sidecondition
that the 4-tuple in the left hand side of the conclusion is good. For all rules we have a
sidecondition that the free names of the process on the left hand side of the conclusion
are contained in A.

Lemma 26 If A ⊢ P
ℓ
⇀ P ′ then P ′ is good.

Proof By inspection of the transition axioms, checking that the 4-tuple on the right
hand side is good in each case, and noting that the definition of P good is preserved by
structural congruence. For t4 by the condition fn([[a; N ;A; Q]]) ⊆ A we have {in, out} ⊆
A so {in, out} ∩ (fn(v) − (A, N, a)) = ∅. By Lemma 11.3 a 6∈ fn(v) By Lemma 11.2
a 6∈ fn(Q′). For t5 by the condition fn([[a; N ;A; Q]]) ⊆ A we have {in, out} ⊆ A so
{in, out} ∩ (fn(x, v) − (A, N, a)) = ∅. By Lemma 11.3 a 6∈ fn(x, v) By Lemma 11.2
a 6∈ fn(Q′). For t8 by Lemma 11.2 a 6∈ fn(Q′). The other cases are straightforward. 2

Lemma 27 For all good P we have A ⊢ P
ℓ

−→ P ′ iff A ⊢ P
ℓ

⇀ P ′.

Proof We first show that A ⊢ P
ℓ

⇀ P ′ implies A ⊢ P
ℓ

−→ P ′, by induction on deriva-
tions of the former. The converse direction is by a case analysis of the possible transition
derivations. 2

Purity

Proof (of Proposition 2) We show by induction on k that Q is good and that the
conclusion holds. The k = 0 case is by Lemma 25. The inductive step uses Lemmas 26
and 27. 2

Proof (of Proposition 3) Similar to that of Proposition 2; we omit the details. 2

Proof (of Proposition 4) Similar to that of Proposition 2; we omit the details. 2

Honesty

Proof (of Proposition 5) We check that the unary wrapper W1 is honest (the proof
for L should be similar). If N is a finite set of names, a is a name and A and Q are
processes define

〈〈〈a; N ;A; Q〉〉〉
def
= Q

| {| out
↑
v | out

a
v ∈ A |}

| {| out
↑
v | out

↑
v ∈ A |}

| {| x↑v | xav ∈ A ∧ x 6= out |}

| {| in
↑
v | in

a
v ∈ A |}

〈〈a; N ;A; Q〉〉
def
= (ν N)〈〈〈a; N ;A; Q〉〉〉

39

Note that if a; N ;A; Q is good then a 6∈ fn(〈〈a; N ;A; Q〉〉). Now take the family of relations
below.

RA = ≡ ◦{ [[a; N ;A; Q]], 〈〈a; N ;A; Q〉〉 | a; N ;A; Q good and fn([[a; N ;A; Q]]) ⊆ A }◦ ≡

We must check that for any P with a 6∈ fn(P) and A ⊇ fn(W1[P]) we have W1[P] RA

P and that R is an h-bisimulation. The former follows from Lemma 25 and the fact
〈〈a; ∅; 0; P 〉〉 ≡ P . For the latter there are a number of cases to check, as below. We give
only the most interesting in detail.

Consider C RA D. We know there exist good a; N ;A; Q such that C ≡ [[a; N ;A; Q]],
D ≡ 〈〈a; N ;A; Q〉〉, and fn(C) ⊆ A. Without loss of generality suppose A and N, a are

disjoint. Note that by Proposition 18 if A ⊢ C
ℓ

−→ C′ then A ⊢ [[a; N ;A; Q]]
ℓ

−→ C′, and
similarly for transitions of D.

Clause 1′ Suppose A ⊢ 〈〈a; N ;A; Q〉〉
out

↑
v

−→ U .

By Lemma 24 there exists a partition N1, N2 of N , a process U ′, and

h :(fn(v) − A)→(N − (A, N2, a))

injective such that

A, N ⊢ 〈〈〈a; N ;A; Q〉〉〉
out

↑
v′

−→ U ′

A ⊢ 〈〈a; N ;A; Q〉〉
out

↑
v′

−→ (ν N2)U ′ ≡ (1A + h)U
N2 = N − fn(v′)

where v′ = (1A + h)v. There are three cases.

(a) due to A, N ⊢ Q
out

↑
v′

−→ Q′ with U ′ ≡ 〈〈〈a; N ;A; Q′〉〉〉.

By Lemma 14 A, N, a ⊢ Q
out

↑
v′

−→ Q′.

By t4,t6,t7 and Lemmas 26,27

A ⊢ [[a; N ;A; Q]]
τ

−→
τ

−→
out

↑
v′

−→ [[a; N − fn(v′);A; Q′]]

By Lemma 13

A ⊢ [[a; N ;A; Q]]
τ

−→
τ

−→
out

↑
v

−→ (1A + h−1)[[a; N − fn(v′);A; Q′]]

Now a; N − fn(v′);A; Q′ is good, hence

[[a; N − fn(v′);A; Q′]] RA∪fn(v′) 〈〈a; N − fn(v′);A; Q′〉〉,

and R is closed under injective renamings that preserve {in, out}, so

(1A + h−1)[[a; N − fn(v′);A; Q′]] RA∪fn(v) (1A + h−1)〈〈a; N − fn(v′);A; Q′〉〉 ≡ U

(b) due to an out
a
v ∈ A. Match using t6,t7.

(c) due to an out
↑
v ∈ A. Match using t7.

Suppose A ⊢ 〈〈a; N ;A; Q〉〉
τ

−→

(a) due to A, N ⊢ Q
τ

−→ Q′. Match using t8.

40

(b) due to A, N ⊢ Q
in↑v
−→ Q′ and in

a
v ∈ A. Match using t2,t8.

Clause 2′ Suppose A ⊢ 〈〈a; N ;A; Q〉〉
in↑v
−→ . This must be due to A, N ⊢ Q

in↑v
−→ Q′. Match

using t1,t2,t8.

Clause 1 Suppose A ⊢ [[a; N ;A; Q]]
out

↑
v

−→ . This must be by t7; it can be matched directly.

Suppose A ⊢ [[a; N ;A; Q]]
τ

−→ . This must be by one of the following rules.

t2 Match with zero τ steps.

t4 Using Lemma 20 the output particle is present in Q. The transition can then
be matched with zero τ steps.

t5 Similar to t4.

t6 Match with zero τ steps.

t8 Match with one τ step.

Clause 2 Suppose A ⊢ [[a; N ;A; Q]]
in↑v
−→ . This must be by t1. It can be matched with zero

τ steps, using the second part of Clause 2 of the definition of h-bisimulation.

Clause 3 Suppose A ⊢ [[a; N ;A; Q]]
ℓ

−→ for another label ℓ. Vacuous.

2

41

References

[Aba97] Mart́ın Abadi. Secrecy by typing in security protocols. In TACS ’97 (open
lecture), LNCS 1281, pages 611–638, September 1997.

[ACS96] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimu-
lations for the asynchronous π-calculus. In Ugo Montanari and Vladimiro
Sassone, editors, CONCUR ’96, volume 1119 of Lecture Notes in Computer
Science, pages 147–162. Springer-Verlag, 1996.

[AFG98] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Secure implementa-
tion of channel abstractions. In LICS 98 (Indiana), pages 105–116. IEEE,
Computer Society Press, July 1998.

[AG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic pro-
tocols: The spi calculus. In Proceedings of the Fourth ACM Conference on
Computer and Communications Security, Zürich, pages 36–47. ACM Press,
April 1997.

[Ama97] R. M. Amadio. An asynchronous model of locality, failure, and process
mobility. In Proc. COORDINATION 97, LNCS 1282, 1997.

[AP94] R. M. Amadio and S. Prasad. Localities and failures. In P. S. Thiagarajan,
editor, Proceedings of 14th FST and TCS Conference, FST-TCS’94. LNCS
880, pages 205–216. Springer-Verlag, 1994.

[Bou92] Gérard Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche
1702, INRIA Sofia-Antipolis, May 1992.

[BTS+98] Godmar Back, Patrick Tullmann, Leigh Stoller, Wilson C. Hsieh, and Jay
Lepreau. Java operating systems: Design and implementation. Technical
Report UUCS-98-015, University of Utah, Department of Computer Science,
August 6, 1998.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proc. of
Foundations of Software Science and Computation Structures (FoSSaCS),
ETAPS’98, LNCS 1378, pages 140–155, March 1998.

[CG99] Luca Cardelli and Andrew D. Gordon. Types for mobile ambients. In Pro-
ceedings of the 26th ACM Symposium on Principles of Programming Lan-
guages, 1999.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and
Didier Rémy. A calculus of mobile agents. In Proceedings of CONCUR ’96.
LNCS 1119, pages 406–421. Springer-Verlag, August 1996.

[FHL+96] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullman, Godmar Back, and
Steven Clawson. Microkernels meet recursive virtual machines. In USENIX,
editor, 2nd Symposium on Operating Systems Design and Implementation
(OSDI ’96), October 28–31, 1996. Seattle, WA, pages 137–151, Berkeley,
CA, USA, October 1996. USENIX.

[Gon97] Li Gong. Java security architecture (JDK 1.2). Technical report, JavaSoft,
July 1997. Revision 0.5.

42

[GWTB96] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure
environment for untrusted helper applications. In Sixth USENIX Security
Symposium, San Jose, California, July 1996.

[HR98a] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with
secrecy and integrity. In Proceedings of the 25th POPL, January 1998.

[HR98b] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. In Workshop on High-Level Concurrent Languages, 1998. Full
version as University of Sussex technical report CSTR 98/02.

[HR98c] Matthew Hennessy and James Riely. Type-safe execution of mobile agents
in anonymous networks. In Workshop on Mobile Object Systems, (satellite
of ECOOP ’98), 1998. Full version as University of Sussex technical report
CSTR 98/03.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous com-
munication. In Pierre America, editor, Proceedings of ECOOP ’91, LNCS
512, pages 133–147, July 1991.

[IAJR97] Nayeem Islam, Rangachari Anand, Trent Jaeger, and Josyula R. Rao. A
flexible security system for using Internet content. IEEE Software, 14(5):52–
59, September/October 1997.

[Jon99] Michael B. Jones. Interposition agents: Transparently interposing user code
at the system interface. In Jan Vitek and Christian Jensen, editors, Secure
Internet Programing: Security Issues for Mobile and Distributed Objects.
Springer Verlag, 1999.

[Lam73] Butler W. Lampson. A note on the confinement problem. Communications
of the ACM, 16(10):613–615, 1973.

[LR97] G. Lowe and B. Roscoe. Using CSP to detect Errors in the TMN Protocol.
IEEE Transactions on Software Engineering, 23(10):659–669, 1997.

[McL94] J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Soft-
ware Engineering. Wiley & Sons, 1994.

[ML98] Andrew C. Myers and Barbara Liskov. Complete, safe information flow with
decentralized labels. In Proceedings of the 1998 IEEE Symposium on Security
and Privacy, Oakland, California, pages 186–197, 1998.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts
I + II. Information and Computation, 100(1):1–77, 1992.

[Mye99] Andrew C. Myers. Jflow: Practical static information flow control. In Pro-
ceedings of the 26th ACM Symposium on Principles of Programming Lan-
guages (POPL 99), 1999.

[NL98] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. In
G. Vigna, editor, Mobile Agents and Security, volume 1419 of LNCS, pages
61–91. SV, 1998.

[RH98] James Riely and Matthew Hennessy. A typed language for distributed mobile
processes. In Proceedings of the 25th POPL, January 1998.

43

[Sch98] Fred B. Schneider. Enforceable security policies. Technical Report TR 98-
1664, Computer Science Department, Cornell University, Ithaca, New York,
January 1998.

[Sew97] Peter Sewell. Global/local subtyping for a distributed π-calculus. Tech-
nical Report 435, University of Cambridge, August 1997. Available from
http://www.cl.cam.ac.uk/users/pes20/.

[Sew98] Peter Sewell. Global/local subtyping and capability inference for a dis-
tributed π-calculus. In Proceedings of ICALP ’98, LNCS 1443, pages 695–
706, 1998.

[Sew99] Peter Sewell. A brief introduction to applied π, January 1999. Lecture notes
for the Mathfit Instructional Meeting on Recent Advances in Semantics and
Types for Concurrency: Theory and Practice, July 1998. Available from
http://www.cl.cam.ac.uk/users/pes20/.

[SWP98a] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location
independence for mobile agents. In Workshop on Internet Programming
Languages, Chicago, May 1998.

[SWP98b] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce.
Location-independent communication for mobile agents: a two-
level architecture. Submitted for publication. Draft available from
http://www.cl.cam.ac.uk/users/pes20/, 1998.

[VB99] Jan Vitek and Ćiaran Bryce. Secure mobile code: the javaseal experiment.
Manuscript, 1999.

[VC98] Jan Vitek and Guiseppe Castagna. Towards a calculus of mobile compu-
tations. In Workshop on Internet Programming Languages, Chicago, May
1998.

[VC99] Jan Vitek and Giuseppe Castagna. Mobile Agents and Hostile Hosts.
In Journées Francophones des Langaages Applicatifs (JFLA99), Morizine,
France, Feb 1999.

[VIS96] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4:167–187, May 1996.

[VS98] Dennis Volpano and Geoffrey Smith. Confinement properties for program-
ming languages. SIGACT News, 29(3):33–42, September 1998.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In Abramsky, Gabbay,
and Maibaum, editors, Handbook of Logic in Computer Science, volume IV,
pages 1–148. Oxford University Press, 1995.

44

