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Abstract

Operating systems are traditionally implemented in low-
level, performance-oriented programming languages. These
languages typically rely on minimal runtime support and
provide unfettered access to the underlying hardware. Tra-
dition has benefits: developers control the resources that
the operating system manages and few performance bottle-
necks cannot be overcome with clever feats of programming.
On the other hand, this makes operating systems harder
to understand and maintain. Furthermore, those languages
have few built-in barriers against bugs. This paper is an ex-
periment in side-stepping operating systems, and pushing
functionality into the runtime of high-level programming
languages. The question we try to answer is how much sup-
port is needed to run an application written in, say, Smalltalk
or Python on bare metal, that is, with no underlying oper-
ating system. We present a framework named NopSys that
allows this, and we validate it with the implementation of
CogNos a Smalltalk virtual machine running on bare x86
hardware. Experimental results suggest that this approach
is promising.
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1 Introduction

Operating systems are software layers shielding applications
from direct contact with the underlying hardware while,
at the same time, acting as resource managers. Tradition-
ally they consist of large and complex code bases written
in performance-oriented languages such as C. The choice
of language is not accidental. As the operating system is
the bottom layer of the software stack, developers look for
languages that provide direct access to hardware, that have
little runtime baggage, and that run both predictably and
fast. Of course, that choice comes at a price. Since the entire
code base of the operating system is usually written in a
language with few or no built-in barriers for catching bugs
such as memory errors, the entire code base is exposed to
vulnerabilities.

Traditions should be challenged. Almost four decades ago,
Ingalls [1981] proclaimed that operating systems can be dis-
pensed with. This pronouncement came in the early days of
Smalltalk. It can be understood as a part of a two-pronged
argument. As Kell [2013] explains it, Ingalls was proposing
to revisit the choice of implementation language; arguing
that an operating system can be developed in a high-level,
productivity-oriented programming language suitably ex-
tended with low-level hooks. This approach was followed
by systems such as Bell Labs’ Plan 9 [Pike et al. 1995] and
Microsoft’s Singularity [Hunt and Larus 2007] for example.
The other prong of Ingalls’ argument is that the runtime

system of a language like Smalltalk is already close to an
operating system itself, and that there are benefits to be had
by granting full control over the hardware to the language
level. In this case, the operating system mostly disappears,
shrinking down to a thin software layer in charge of dealing
with the basic hardware conventions: interrupt handling,
register management and bootstrapping. This approach was
followed by Unikernels such as Mirage [Madhavapeddy et al.
2013] and bare-metal virtual machines such as FijiVM [Pizlo
et al. 2009].
This paper explores the technical issues involved in fus-

ing a programming language execution environment and an
operating system into a single software artifact. We name
the resulting blend a self-contained development environ-
ment. Our goal is to show how to minimize the low-level
code that must be written for this blend to happen and to
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push services such as memory management, scheduling, and
device drivers to the language level. While our paper focuses
on implementation issues, our motivation is to obtain the
following advantages:

Improved security: an operating system written in a
managed language may expose fewer security vulner-
abilities as the language has built-in error checking
facilities.

Improved assurance: device drivers and protocols writ-
ten in high-level languages may be easier to reason
about, test and verify than a combination of C and
assembly.

Educational use: the number of students familiar with
productivity languages such as JavaScript is likely
larger than those proficient in C. It may thus be pos-
sible to teach operating system construction mostly
with higher-level languages (with only occasional dips
into low-level code).

This paper does not attempt to validate the above. Instead
we focus on two artifacts: the NopSys framework and the
CogNos operating system. The NopSys framework is a min-
imalist library for loading a language runtime into memory
and forwarding hardware interrupts. It consists of two main
components: 1) a loader that allows a system to bootstrap
2) event handlers that perform the essential register man-
agement required by the hardware and then delegates the
actual handling to the language runtime. Overall, NopSys is
made up by 3428 lines of C code and 608 lines of assembly
code.

To show that NopSys is sufficient to turn a programming
language runtime into an operating system, we implemented
CogNos, a bare-metal Smalltalk built using a lightly extended
version of the Cog virtual machine [Miranda 2011] comple-
mented with a Smalltalk implementation of device drivers for
interrupt controllers, PCI controllers, IDE controllers, serial
port devices, PS/2 mouse and keyboard, ATA hard disks, and
a FAT32 file system. Consequently, CogNos is a reflective,
live, and meta-circular Smalltalk development environment
for x86 platforms. NopSys and CogNos are an evolution of
the SqueakNOS project, which aimed to run Smalltalk on
top of the predecessor of Cog virtual machine on the bare
metal.

The main contribution of this paper is the design of Nop-
Sys and the production of evidence suggesting that it suffices
to implement a self-contained development environment.We
have conducted a small number of experiments to evaluate
the performance of CogNos, but these should be taken with
a grain of salt. Operating systems are the sum of large de-
velopment effort, carefully tuned over time. CogNos is a
proof-of-concept system that was not optimized. We believe
our results are encouraging, but there would certainly be
much more work needed before one could consider deploy-
ing our system.

2 Background

The essence of an operating system is to interface with the
computer hardware: the CPU, the memory, and the myriad
of input/output devices. The landscape of operating systems
is abundant and complex. There are operating systems cover-
ing many different software aspects, user requirements, and
hardware architectures. For instance, mainstream general
purpose operating systems such as Windows, Linux, or mac
OS have almost nothing in common with real time operating
systems targeted at embedded devices.
Most operating systems have a kernel, a single program

running at all times. Moreover, hardware usually support
two modes, a user mode and a privileged mode. The kernel is
the only program that runs in privileged mode. To avoid the
overheads of constantly polling devices, operating systems
are interrupt driven. A programmable interrupt controller
(PIC) interfaces between the myriad of devices and the CPU.
The CPU checks for interruptions periodically and, depend-
ing on the priority of the current task and the interruption
itself, it decides when to handle the interrupt. Several inter-
rupts can be ignored (masked) by notifying the processor or
the PIC.

2.1 Programming Language Virtual Machines

There are some similarities between the virtual machines
used to implement languages such as Java, Python or Small-
talk, and operating systems. Virtual machines typically have
a single kernel that is constantly running, and they may man-
age multiple users, often requiring some protection of the
core of the system from user code. Virtual machines manage
their memory and sometimes perform scheduling tasks over
underlying resources. In fact, like an operating system, the
purpose of a virtual machine is to shield application code
from dealing with the rest of the platform on which it runs.
Cog is a virtual machine developed by Miranda [2011]

and used, among other languages, by three different open-
source Smalltalk releases: Cuis, Pharo [Black et al. 2009], and
Squeak [Nierstrasz et al. 2009]. Cog is written in Slang, a
restricted subset of Smalltalk which is compiled to C code.
It features a just in time compiler, but also a bytecode inter-
preter.
The Cog VM can be extended with plugins, which add

new primitive methods to the VM. Primitive methods form
the API for hosted programs. They allow interaction with
VM internals or the outside world. For example the primitive
method #basicNew allocates a new object. Others exist to
access files, create network sockets, etc.
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3 NopSys – Pedal to the Metal

NopSys is a minimalist framework aiming to facilitate inter-
facing with x86 hardware. Its main features are processor
initialization and hooks to register interrupt handlers. It
also manages build stages and debug configurations, usu-
ally cumbersome tasks in the context of complex systems.
Applications which are statically linked against NopSys can
be loaded by the GNU GRUB bootloader [Matzigkeit and
Okuji 1999] and executed without an operating system. The
resulting kernel can be booted on physical machines as well
as virtualized hardware.

ApplicationNopSys

Hardware

Figure 1. High-level architecture: NopSys is a library to run
applications on the bare metal.

Figure 1 illustrates that NopSys is not a hardware abstrac-
tion layer (i.e., a hypervisor) hosting applications. Instead,
applications linked against NopSys become the lowest layer
themselves. As such, NopSys has a wide range of possible
applications. It could be used to:

• Run an arbitrary binary without the support of a stan-
dard operating system.
• Become the lowest layer of abstraction in library oper-
ating system approaches.
• Build systems where the operating system is fully re-
placed by services implemented in high-level program-
ming languages.

To interface with the external world, applications need
to interact with devices, hard disks, network cards, or the
display. However, NopSys does not provide any hardware
abstraction or drivers. This is not an oversight, but instead a
tribute to its minimalist design. One particular use case that
drove the design, was to simplify porting language virtual
machines to run without the heavy-weight software stack of
mainstream operating systems. Instead, we propose to imple-
ment all the hardware support in a high-level programming
language. Therefore the main goal for NopSys is to provide
the support to bootstrap a language runtime. Everything else
should be implemented in the high-level and memory safe
language on top. This includes interrupt handling, memory
management, device drivers, and hardware abstractions such
as network protocols and filesystems.
To demonstrate NopSys usefulness we developed a sys-

tem called CogNos. Like Figure 2 shows, we link an existing
Smalltalk VM against NopSys and implement a significant
amount of operating system services and drivers in Smalltalk.
The resulting system features device drivers in a memory

HLL

VMNopSys

Hardware

IR Handler Dev Driver

Hooks HW Interface

Figure 2. NopSys linked against a VM. The whole system,
including interrupt (IR) handling and device drivers are im-
plemented in the high-level language (HLL).

safe language by exploiting a minimal set of unsafe primi-
tives. Given the inherent dynamic characteristics of Small-
talk, CogNos also enables to debug and change these drivers
while the system is running. We come back to CogNos and
describe it extensively in section 4. Now we describeNopSys’
main features in more detail.

3.1 Bootstrapping

NopSys adheres to the mutliboot specification [Okuji et al.
2006]. Therefore it can be loaded by any compatible boot-
loader. We use GNU GRUB to perform the basic video mode
settings and initialize the CPU into 32-bit protected mode.
GRUB also loads the kernel files from disk into main memory
and finally passes control to the NopSys _loader assembly
routine. This routine sets up an identity-mapping paging
scheme, switches the CPU into 64-bit long mode, and calls
nopsys_main. Thereupon, in 64-bit long mode, the bootstrap-
ping finishes by enabling SSE and setting up the basic inter-
rupt handlers.

3.2 Interrupt Handling

On x86 there are three main sources of interruption: excep-
tions, hardware interrupts, and system calls. NopSys han-
dles exceptions and hardware interrupts by implementing
minimal routines that only save the execution context and
delegate control to the application. NopSys currently does
not support system calls.1 All the system must be accessed
through the corresponding language-level routine/method
invocation model. Initially, all interrupts are masked. It is the
responsibility of the NopSys client to communicate with the
interrupt controller for unmasking the interrupts it needs to
handle.

Listing 1 shows the six lines of assembly used to delegate
interrupts to the corresponding NopSys client. The external
function signal_semaphore, declared on Line 1, has to be
implemented by the client. Line 2 saves the current context
as mandated by the x86-64 application binary interface (ABI),
line 3 places the interrupt number in register rdi and line 4
calls into the client’s signal_semaphore. Line 5 restores the
context and line 6 returns from the interrupt handling.

1In the current implementation there does not exist a kernel protection
mechanism, so both application and kernel run on ring 0.
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1 extern signal_semaphore
2 SAVE_CONTEXT
3 mov rdi, %1 #Interrupt number
4 call signal_semaphore
5 RESTORE_CONTEXT
6 iretq

Listing 1. NopSys interrupt handling

As the name signal_semaphore suggests,NopSys demands
the client to have threads dedicated to handling interrupts.
signal_semaphore then signals the corresponding client’s
semaphore and returns control to the interrupt handler. Ac-
cordingly, initial interrupt handling terminates instantly.
When the client (language runtime) resumes execution it will
wake up the thread waiting at the corresponding semaphore.
The actual reaction to the interrupt happens asynchronously,
after control is transferred back to the client by iretq. It
is the responsibility of the language-level handler to notify
the PIC that the second stage of the interrupt handling has
finished.
Hardware exceptions2 such as general-protection faults,

invalid opcodes, and division by zero are in most cases
treated as fatal errors. This is usually not a problem because
the application layer is expected to live in a managed envi-
ronment, where program errors are caught early and han-
dled safely. Finally, other exceptions, like page faults, require
synchronous handling and are said to be continuable: they
have to be handled immediately and return to the expression
that originally caused the exception. In NopSys, continu-
able exceptions are handled like hardware interrupts, but by
synchronously calling back into the client.

3.3 Runtime Support

A third ingredient of NopSys, not mentioned so far, is a
minimal C runtime statically linked with the kernel. This
part is mostly due to our aim to simplify linking language
VMs with NopSys. Accordingly, NopSys includes a bare min-
imum subset of the C standard library [Ritchie et al. 1988],
known as libc, to work comfortably with VMs written in C.
NopSys’s libc provides support for I/O functions like printf,
several string and math operations, and malloc for memory
allocation. More powerful memory management support
is expected to be implemented by the language VM. Most
likely other eventual users of NopSys will expect to have
this subset of the libc available too.

2Interrupts 0 to 31

3.4 Build and Try Framework

The NopSys framework provides tools not only for program-
ming, but also for building and debugging. This is accom-
plished by a series of Makefiles that include targets for dif-
ferent build settings to run the eventual clients on top of
emulators, dynamic translators, and virtual machines with
different kinds of debugging facilities. Currently, NopSys
provides support for deploying to x86-64, Bochs [Lawton
1996], QEMU [Bellard 2005], Oracle VirtualBox, and VMWare
VMPlayer.

The NopSys build system takes as input a static object file
with the compiled application and links it with its own code,
creating an executable kernel. The following three require-
ments are necessary for clients to link against NopSys:

1. They must provide a nopsys_vm_main entrypoint.
2. They must not be linked with the standard C library

(using -nostdlib gcc flag at compile time), as NopSys
provides its own implementation.

3. They must be compiled without using a red zone for
the stack (using -mno-red-zone). Otherwise, interrupt
handling routines might corrupt the C stack because
the client will run in ring 0.

Finally, the NopSys build system supports creating a boot-
able disk image which includes the GRUB bootloader. We
provide options to build ISO 9660 or hard disk images. It is
also possible to choose a hardware virtual machine appliance
and to automatically launch an instance. Furthermore, we
include facilities to launch some of those virtual machines
with a gdb stub to remotely debug the resulting system.

4 CogNos – A Self-Contained Smalltalk

As a proof of concept of how the NopSys framework can
be used, we developed CogNos, a Pharo Smalltalk image
running on top of Cog VM with NopSys extensions. Device
drivers and operating system services are implemented at
the Smalltalk level. CogNos allows us to explore supporting
close-to-the-hardware services in a high-level, object-oriented
and live environment. It consists of two main parts:

1. A plugin extending the Cog VM with support for in-
terfacing with the hardware.

2. Smalltalk-level packages providing operating system
services.

CogNos runs on the bare-metal and relies on the Nop-
Sys framework for the most basic hardware management
(see Figure 2). The main role of the VM plugin is to expose
hardware access to Smalltalk programs, partially following
the high-level low-level programming approach described
by Frampton et al. [2009]. The Smalltalk packages imple-
ment interrupt handlers, provide basic device drivers, and
add support for common operating system abstractions such
as filesystems and network protocols.
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Unlikemost operating systems,CogNos is written entirely
in a high-level language. For instance, consider the software
layers involved when saving a file: the FAT32 [Microsoft
2000] filesystem, a block device driver, the ATA [Group 2003]
bus protocol, direct memory access, PCI and PIC drivers.
Each of those is provided by Smalltalk packages. Accordingly,
given the dynamic nature of Smalltalk, they can be debugged,
modified, and extended inside a live system.
The reminder of this section first describes the Cog VM

plugin and then explains the operating system services im-
plemented in Smalltalk. An evaluation to measure the per-
formance overhead of this high-level system programming
style is presented in section 5.

4.1 Cog VM Plugin

As most of the Cog VM, CogNos’ plugin is written in the
restricted Smalltalk subset called Slang. To minimize the
low-level language code and promote developing as much as
possible at the language-level, the plugin aims for a minimal-
ist design. It consists of 25 methods, of which 5 are in charge
of debugging information and the remaining methods ex-
tend the VM with unsafe operations necessary to implement
different kinds of hardware support in Smalltalk.

Four methods provide support for reading and writing the
corresponding CPU control registers (cr 0--3). These regis-
ters manage the execution modes and the memory layout
settings of the platform. One method reads the time stamp
control register (rdtsc) needed for measuring time. Twelve
of the remaining methods provide support for interacting
with the hardware I/O ports, which provide a direct com-
munication with devices. They are twelve because of the
combination of reading/writing operations with different
amounts of information (short, word, double word). Finally,
one method binds a Smalltalk semaphore to a NopSys inter-
rupt handler.
Listing 2 illustrates the implementation of the plugin by

showing two primitives: the first one reads the value of the
control register cr0 and the second binds a semaphore, cre-
ated at the language-level, with a low-level NopSys interrupt
service routine. We present the C transpiled versions because
its syntax is more common than Slang. In addition, the code
was simplified by removing the error handling behavior. For
reading cr0 lines 3 and 4 initialize variables while line 5 loads
the corresponding register into the answer variable. Line 6
converts the value to a Smalltalk integer, and line 7 pushes it
to on the VM stack. The implementation for the remaining
control registers is analogous. For the twelve I/O primitives
the implementation is similar. The main difference is that
they use the in/out inline assembly instruction with their
corresponding parameter management.
For the second primitive, line 12 declares variables, and

line 13 tells the compiler that the code will use the NopSys
array of irq_semaphores. Lines 14 and 15 read the parame-
ters from the VM stack. Line 16 finally sets the Smalltalk

semaphore identifier into the corresponding index. This tells
NopSys that, whenever the corresponding interrupt is sig-
nalled (see subsection 3.2), the VM must wake up the respec-
tive semaphore. Lines 17 and 18 again deal with passing the
result back to the Smalltalk VM. In this case the result is
always true because we omit the error handling. Note that,
overall, primitiveRegisterSemaphoreIndexForIRQ enables to
create or modify an interrupt handler at the language-level
and at run-time.

4.2 OS Library

The biggest portion of CogNos is written directly in Small-
talk. The code provides device drivers for accessing CMOS
memory, PS2 keyboard and mouse, 16550 UART serial cir-
cuits, the PCI bus, the Intel 8259 programmable interrupt
controller, the Realtek 8139 PCI ethernet card, and ATA con-
trollers. It also provides support for FAT32 filesystems, and
a full TCP/IP network stack is ongoing. For statistics on the
size of the code we redirect the reader to section 5.5.
To illustrate the packages we exhibit code snippets that

describe behaviors at different abstraction levels. We start
by describing the initialize method of the Computer class

in Listing 3. The Smalltalk image running on top of Cog-
Nos is configured such that it activates this method during
its startup phase. The method initializes a processor and
a dictionary of devices in Lines 2 and 3. Then, it installs a
series of devices. Each device registers to the devices dic-
tionary during its initialization step. Finally, a filesystem is
initialized.
Each device provides its own initialization depending on

the particular hardware it manages. As an example, Listing 4
shows the installation of the keyboard. Line 3 instantiates

1 primitiveReadRegisterCr0(void)
2 {
3 unsigned long answer;
4 int return_value;
5 asm("movq %%cr0, %0" : "=a" (answer) );
6 return_value = positive32BitInt(answer);
7 popthenPush(1, return_value);
8 }
9

10 primitiveRegisterSemaphoreIndexForIRQ(void)
11 {
12 int semaphore_id, irq_number, return_value;
13 extern irq_semaphores[];
14 semaphore_id = stackIntegerValue(1);
15 irq_number = stackIntegerValue(0);
16 irq_semaphores[irq_number] = semaphore_id;
17 return_value = trueObject();
18 popthenPush(3, return_value);
19 }

Listing 2. Slang primitives translated to C.
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the keyboard on port 96. This keyboard object is the handler
that will finally be signalled by the NopSys interrupt service
routines described in Listing 1. Line 4 registers it as the
interrupt handler for IRQ 1. From line 6 on, the code shows
how CogNos handles keyboard interrupts. In line 8 the code
reads from the keyboard the raw bytes representing the event.
Then it decodes exactly what kind of key has been pressed
and acts accordingly.
To conclude the explanation of the Smalltalk packages,

Listing 5 describes a method of the FAT32 Filesystem im-
plementation in charge of returning the files contained in
a directory. Essentially, the method looks for the clusters
of the block device in which the directory has been stored.
Then it goes through all of them and collects the file records
they contain, to finally return the list of files.

4.3 C Code

The Cog VM is written in a mixture of Slang and C code.
Slang is translated into C code, after which all code is com-
piled with a C compiler. The code is split in OS-independent
and OS-dependent code. CogNos adds to Cog a new plat-
form, NopSys, to implement the minimum interface that
Cog VM expects from any OS. This includes the following
platform-specific functionality:

1 Computer>>initialize
2 processor ← X86Processor new.
3 devices ← Dictionary new.
4 PIC8259 installOn: self. "interrupt controller"
5 PS2Keyboard installOn: self.
6 ATAController primary installOn: self.
7 primaryFilesystem ← self diskFS.

Listing 3. Computer initialization

1 PS2Keyboard class>>installOn: aPC
2 | keyboard |
3 keyboard ← self onPort: 16r60.
4 aPC pic addHandler: keyboard forIRQ: 1.
5

6 PS2Keyboard>>handleKeyboardIRQ
7 | scanCode key |
8 scanCode ← self readKeyboardData.
9 decoder nextScanCode: scanCode.
10 decoder isModifier ifFalse: [ "ascii char"
11 key ← decoder keyUsing: keysMapping

modifiers: modifiersAndButtons.
12 decoder isKeyUp ifTrue:
13 [ self newKeyboardUpEvent: key ] ifFalse:
14 [ self newKeyboardDownEvent: key]]
15 ifTrue: [ " Code when being a modifier... "].

Listing 4. Computer initialization

Image reading. The image is loaded into memory by
GRUB. The CogNos main procedure receives the start
address from NopSys.

Memory layout. NopSys finds the last memory address
used by the kernel by relying on the multiboot spec-
ification interface implemented by GRUB. CogNos
manages memory after the Smalltalk image has been
initialized. The heap can then grow freely towards the
end of memory.

Timing information management. CogNos uses the
NopSys functions provided for reading the timestamp
counter and for converting clock ticks to microsec-
onds.

Compatibility. Other functionality that is implemented
as empty stubs, like accessing the native operating
system clipboard.

As the final step the CogNos Makefile includes a call to
the previously described NopSysMakefile, which takes the
CogNos object file, links everything together and enables to
launch (and eventually debug) CogNos on top of hardware
virtual machine.

5 Evaluation

In this section we report on a series of experiments3 aiming
to provide a general overview of the impacts the NopSys
approach carries in terms of performance and code size. We
compare the performance of Smalltalk benchmarks as ex-
ecuted by Cog on Ubuntu OS against CogNos. Then, we
measure the impact of performing I/O in CogNos. Finally
we compare boot times and the difference in terms of code
sizes and memory footprints.

3In https://github.com/nopsys/CogNOSExperiments the interested reader
will find instructions on how to repeat and reproduce the experiments.

1 FAT32Filesystem>>filesFor: aDirectory
2 | cluster files clusters subfiles |
3 files ← OrderedCollection new.
4 clusters ← self clustersChainFor: aDirectory.
5 clusters do: [ :aNumber |
6 cl ← self clusterAt: aNumber.
7 subfiles ← cl fileRecords collect: [ :rec |
8 NOSFile
9 named: record name
10 identifier: record firstCluster
11 size: record size ].
12 files addAll: subfiles ].
13 ↑ files

Listing 5. Computer initialization

6
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5.1 Experimental set up

We use three different operating systems in our experiments:
MINIX 3 [Tanenbaum and Woodhull 1987], Ubuntu/Desk-
top, and Ubuntu/Server. MINIX 3 is a free open-source op-
erating system featuring a micro-kernel and supporting a
wide range of hardware devices and software protocols for
both, ARM and x86 platforms. It is mostly written in C and
aims at achieving high reliability through fault tolerance and
self-healing techniques. To do so, most of MINIX 3 features
(including the memory manager) run as server processes
at the user level. Because of its size and approach it is well
suited for both embedded and standard appliances. Being
a well documented operating system, suitable for research
as well as for industrial applications, in both embedded and
standard architectures, and with a minimal kernel approach,
we consider MINIX 3 provides a fair baseline for comparison
against CogNos. On the other hand, Ubuntu is one of the
world’s most-popular multi-platform open-source operating
systems, covering a wide range of use cases. Both versions,
desktop and server, feature the same kernel. The main dif-
ference is that the server version runs in headless mode and
does not include several general purpose applications such as
the office suite, web browsers, and multimedia like software.
As Smalltalk benchmarks we chose the suite proposed

by Marr et al. [2016] for cross-comparing dynamic language
implementations. The benchmarks were collected from vari-
ous sources such as Computer Language Benchmarks, Oc-
tane and independent additions. Their size ranges from 2
to 20 classes, and 20 to 350 lines of executed code and are
mostly computation bound. They do not perform any kind of
I/O. To account for the non-determinism in modern systems,
each benchmark result is based on 10 in-process iterations
and execution time is measured after 10 iterations, which
are counted as warmup.
To run all the experiments under the same setting we

resort to install the aforementioned operating systems and
benchmarks on top of a VirtualBox bundle with a single
processor and 2GB of RAM. The machine running the virtual
environment and collecting the results is a quad-core Intel
Core i7-3770, 3.50 GHz with 16 GB RAM, running OS X High
Sierra version 10.13.5.

5.2 Language Performance

To understand the performance impact of implementing op-
erating system services in a high-level language we compare
a set of benchmarks in CogNos with a standard Cog VM on
top of Ubuntu Desktop. To avoid inaccuracies because of dif-
ferent artifact versions we use in both cases a VM compiled
from the same source code and a very similar set of activated
plugins. The only difference is that the VM for Ubuntu is
compiled along with a couple of plugins needed for running
Cog under Unix-like environments while the CogNos VM
includes the CogNos plugin (see Section 4.1). The Smalltalk

NOS−Int

NOS−Jit

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Figure 3. Overhead of CogNos vs Cog (interprer/JIT).

image is the same but it runs a slightly different initialization
process depending on the environment under which it is
running. For each measurement we report performance with
the JIT compiler enabled and disabled.
Figure 3 shows boxplots of the results for both, the JIT

and the interpreter versions of CogNos. Each plot is nor-
malized to the mean of running Cog on Ubuntu for each
respective mode. For both versions, the running times are
around 1x±0.15 of the baseline. Table 1 presents these results
along with several statistical values such as the confidence
interval for each of the results. The mean overhead of the JIT
version is 0.97 while the interpreter runs 1.12 times slower
respectively.

Table 1. Overall Baseline Results

Runtime OF CI-95% Sd. Min Max Median

CogNos-Jit 0.97 <0.88 - 1.06> 0.13 0.64 1.14 0.99
CogNos-Int 1.12 <0.87 - 1.44> 0.64 0.85 2.85 0.95

Figure 4 presents the results for individual benchmarks
for interpreted mode (top) and JITed mode (bottom). With
the interpreter, Mandelbrot and NBody have a significant
overhead in CogNos (around 3x and 2x slower respectively).
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Figure 4. Overhead of NopSys vs Cog on VirtualBox.
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We have not been able to explain these outliers. With the
JIT compiler, DeltaBlue runs significantly faster in CogNos.
This is mainly due to DeltaBlue having a long compilation
phase that finishes faster in CogNos. We observed that most
benchmarks reach the end of the compilation phase sooner
under CogNos. The worst overheads of CogNos comparing
the JIT versions are below 20% (Storage and List).

Overall, the results suggest that running a system on top
of NopSys does not significantly impact performance for
computation-based scenarios, i.e., scenarios not performing
input/output operations. In addition we observed two inter-
esting facts: the benchmarks in CogNos appear to be more
predictable (the boxplots are smaller) and the warming up
phase of the JIT compiler seems to be faster. Although we
still need to perform more exhaustive experiments, we as-
sume the overall lower system load on CogNos, can explain
both of these effects.

5.3 I/O Performance

This experiment intends to give an idea of the overhead
incurred by I/O bound applications. To do so, we design an ad-
hoc benchmark that walks through all the files of a directory
and reads their content. We measure the time it takes to run
the benchmark under three different settings. First, CogNos
using its own set of software layers for performing all the
operations. In addition, we also measure CogNos but using a
ramdisk, i.e., a FAT32mounted directly frommemory. Finally,
we assess Cog running on top of Ubuntu. The filesystem for
the CogNos version is FAT32, the only filesystem CogNos
currently supports. For Cog under Ubuntu, we decide to keep
its standard filesystem, ext4. The directory contains 100 files,
each containing only one character.
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M
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Figure 5. Read 100 files. CogNos-RD uses a FAT32 fs on a
ram disk, CogNos uses a FAT32 fs on an ATA controller, and
Cog uses an ext4 filesystem. (interpreted)

Figure 5 shows the results in logarithmic scale. Table 2
shows the final results along the corresponding statistical
values. Our current implementation is around 10x times
slower than Cog under Ubuntu for this I/O driven bench-
mark. But, when using the ramdisk (CogNos-RD) instead
of disk access, the results are 100x faster, exposing the fact
that most of the overhead is caused by the disk access. It is
worth noting that other library operating systems reach I/O

performance on par with standard operating systems under
similar conditions [Engler et al. 1995; Madhavapeddy et al.
2013]. Consequently, these results expose that there is still
a significant need to improve our Smalltalk hardware man-
agement services in order to reduce the current excessive
input/output overheads.

Table 2. Overall Filesystem Results

Runtime Time CI-95% Sd. Median

CogNos-RD 3.65 <3.42 - 3.87> 0.61 5.14
Cog 31.23 <30.63 - 31.84> 1.62 36.14
CogNos 381.62 <376.32 - 386.93> 14.20 418.47

5.4 Boot Time

We now measure the time it takes CogNos, Ubuntu desktop
(UbuD), Ubuntu server (UbuS), and Minix3 to boot up. To
be as precise as possible we report the raw cycles since the
systems are powered on along with the cycles normalized to
the minimum value of the sample. For CogNos we report the
cycles until the Smalltalk initialization phase finishes. All the
device drivers initialization takes place within that phase as
explained in section 4.2. For Minix3 we report the cycles until
the multi-user part of the init process (which mainly loads
the filesystem and performs some basic initialization) ends.
For each Ubuntu we report the time until the initialization
of the first service.
Since CogNos is the fastest of the compared systems we

use it as baseline. Figure 6 shows the respective overheads of
the other systems. Table 3 shows the final numbers. CogNos
boots in 109 less cycles than MINIX3, which is the most fair
of our comparisons. Accordingly, Minix boots around 1.07x
slower than CogNos. On the other hand Ubuntu and Ubuntu
server versions take in the order of 1010 (1.8x) and 2 ∗ 1010
(2.6x) more cycles respectively to start the init process.
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Figure 6. Boot times comparison.

CogNos does very few things for booting up. Essentially,
it only needs NopSys to load the Smalltalk image in memory
and initialize the processor registers. After that, it immedi-
ately starts running the Smalltalk image. Within Smalltalk,
CogNos mainly enables the needed hardware and registers
the corresponding interrupt handlers. The system does not
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need to deal with different users, login systems, nor complex
memory management schemes. Accordingly the results are
expected.

Table 3. Boot Results

VM Cycles OF

CogNos 1.37e+10 1.00
Minix 1.47e+10 1.07
UbuD-min 2.47e+10 1.79
UbuS-min 3.56e+10 2.59

5.5 Source Code Statistics

Table 4 shows statistics about the whole codebase of both
NopSys and CogNos. NopSys consists of 608 Assembly LOC
and 3428 C LOC. The assembly code mainly defines all the
needed interrupt handlers (see section 3.2). In additions, it
also deals with the initialization of basic structures needed
by hardware convention such as the global descriptor table.
It also provides support for managing several CPU registers
such as the control registers and the tsc (time stamp counter)
needed for benchmarking.
The C code deals with the initialization of structures at

the C level, implements several functions for managing the
display using a framebuffer, and defines several general pur-
pose functions from the libc. In addition, it also includes
development tools such as a serial device driver for receiving
debug information when the display is not working and a
debug console in which to print any kind of messages. Hence,
it is worth noting that from the 3428 C LOC, about 294 are
for supporting debugging tools and 1562 encode the fonts
used by the system. Consequently, this leaves out only 1572
C LOC describing essential behavior.
Now, considering in addition CogNos, as Table 5 sum-

marizes, the code also contains 5203 lines of Smalltalk code.
This includes all the device drivers, software protocols and
primitive operations fully described in section 4.2. Overall,
CogNos and NopSys contains in the order of 10000 LOC at
the moment of this writing. On the other hand, if we take
into account also the whole sources from a Pharo Smalltalk
image, there are 653746 Smalltalk LOC. This includes many
classes and libraries which are not needed by nor used by
CogNos. The Cog/JIT VM source code is made of around
430000 lines of C code (including C translated from Slang)
and 10000 assembly lines.
The MINIX 3 microkernel is only about 12,000 lines of C

and 1400 lines of assembler for very low-level functions such
as catching interrupts and switching processes [Tanenbaum
and Bos 2014]. For a matter of completeness we also provide
basic statistics about the whole project. At the time of writ-
ing, the official MINIX3 repository [Minix 2018] reported
7,5 million executable LOC mostly written in C and C++.

This includes a heterogeneous set of device drivers, software
protocol implementations, and even package manager appli-
cations. Finally, according to the Linux foundation official
reports [LinuxFoundation 2017], the 4.13 version of Linux
kernel already contains about 25 millions of LOC.

Table 4. Source code statistics

Package Language Classes Methods LOC

Source code Assembly 1 0 608
Libc headers C 1 0 90
Source code C 1 0 1,461
Headers C 1 0 1,877
Dev-Base Smalltalk 9 422 1,631

Dev-Processor Smalltalk 2 8 25
Dev-Storage Smalltalk 6 153 865
Ext-Structures Smalltalk 11 135 419
Filesystems Smalltalk 4 57 206
FAT32 Smalltalk 7 197 900

Kernel Smalltalk 5 117 439
Storage Smalltalk 19 180 718

Table 5. Source code overall

Language Classes Methods LOC

Assembly 1 0 608
C 3 0 3,428
Smalltalk 63 1,269 5,203
Total 67 1,269 9,239

5.6 Discussion

In terms of inherent performance, at least for computational
driven applications, the benchmarks expose that the over-
heads are in general low, if there are any. Only two bench-
marks exposed excessive overheads under the interpreted
version. Both intensively use floating point arithmetic oper-
ations.
The hard disk experiment challenges exhaustively Cog-

Nos capabilities. The results showed that CogNos still needs
important performance improvements to become practi-
cal under I/O driven scenarios. Since our main goal was
to demonstrate its feasibility, in most of the development
choices we opted for a naive approach instead of complex but
performant algorithms and data structures. This is exactly
the opposite of mainstream operating systems like Linux
based ones. For instance the filesystem layer in Linux is
heavily optimized with ad-hoc data structures and caching
systems at different levels.
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Finally, in the case of boot loading time CogNos outper-
formed MINIX 3. We also illustrate that CogNos code size
is relatively small in comparison to MINIX 3. For a matter
of completeness we also show that mainstream general pur-
pose operating systems like Linux have a considerably larger
code base. Nevertheless, it is worth noting that our compar-
isons in this experiment are only informative. It is not fair
to compare the size of general purpose, multi-user, stable,
and portable operating systems with our research proof of
concept implementation.

Threats to validity. NopSys is a language-independent frame-
work. However, we only assessed it against the Cog VM.
Testing the library with more runtimes present considerable
challenges. On one hand, the runtime must implement the
NopSys interface. Although we carefully designed the library
so that this task is simple, language runtimes are complex
software artifacts. On the other hand, to make it actually us-
able, the approach needs a language-level implementation of
several device drivers and software protocols. The mitigation
of this threat relies on the fact thatNopSys is minimalist, and
revisiting its source code shows that there is no language
dependent code.

Regarding the performance results, the set of benchmarks
that we selected are not representative of general applica-
tions. Accordingly, the results may differ under user particu-
lar scenarios. To partially mitigate these threats, we measure
times for computational based benchmarks as well as for I/O
based applications. Most of the benchmarks were already
used to measure Smalltalk implementations. Moreover, we
decided to use VirtualBox for running the experiments to
setup the whole benchmarking within the same machine.
This additional layer may influence the results.

6 Related Work

Smalltalk-80 [Goldberg and Robson 1983] descendants, and
languages following Smalltalk’s tradition, like Self [Ungar
and Smith 1987], were originally conceived to be self-con-
tained. For instance, they provide their own user interfaces
and the languages only interact with a runtime providing a
significant amount of low-level services. We are not aware
of implementations of these languages that run on the bare
metal or implement their own device drivers. In contrast
CogNos not only runs on the bare metal but pushes, as far as
possible, the interaction with the hardware to the language
level.
A number of languages were extended to act as self-con-

tained environments. Mesa programming language [Mitchell
et al. 1978] was a precursor to Modula-2 [Wirth 2012], which
served as the programming language for both the applica-
tions and the operating system of Lilith [Knudsen 1983].
Oberon [Wirth 1989], a successor to Modula-2, was used to
implement the Oberon operating system. The first Java op-
erating system was JavaOS from Sun [Saulpaugh and Mirho

1999]. JavaOS relied on an interpreter and was not widely
adopted. It was followed by JX [Golm et al. 2002] which ran
on x86 and PPC and supported dynamic compilation. The
authors reported slowdowns of about 50% in comparison to
Java on Unix. One notable feature of JX was its support for
component isolation to improve security and isolate failure
points. The latest effort in this direction is FijiVM, a Java
virtual machine for embedded and real-time system that runs
on bare metal [Pizlo et al. 2010]. While FijiVM had a larger
C code base than CogNos, it also allows developers to write
interrupt handlers and device drivers in Java [Pizlo et al.
2009].

In the functional setting, Hallgren et al. [2005] presented a
restricted monadic framework to access low-level hardware
features aiming at safety. Their work describes the challenges
of implementing the framework as well as attempts to for-
malize it. As a proof of concept the authors describe House,
a small operating system coded almost entirely in Haskell
using the monadic interface for the IA32. The core of Haskell
is type-safe and memory-safe, which prevents many classes
of bugs, and it is also pure, which eases reasoning about pro-
gram behavior. Our work differs from the aforementioned
in two main different aspects. First, NopSys is a language-
agnostic library. Second, our proof of concept is a Smalltalk
system, which had not been explored before. This means
that we had to support a graphical user interface and enable
a live-programming experience for system development.
Monolithic operating systems run all services in kernel

mode and interact with user space via system calls. In con-
trast, microkernels seek to define a minimal subset of essen-
tial services and leave all other functionalities to the user
level. For instance, this maymean to provide only scheduling,
memory management, and inter-process communication.
Our approach with NopSys is kernel-agnostic. A Smalltalk
system naturally tends toward the monolithic side of the
equation as it is a single-user, everything shared system.
One can easily conceive using NopSys together with a lan-
guage that provides isolation and then use the language’s
mechanisms for protection. This was in essence the approach
taken in Hunt and Larus [2007]. In Java, the work on Iso-
lates demonstrated how to achieve isolation [Czajkowski
2000] and how to benefit from properties of the language for
efficiency [Palacz et al. 2002].
Exokernels [Engler et al. 1995] propose to provide app-

lication-level management of physical resources, as well
as inter process communication and memory management.
Their main hypothesis is that the rigid interface imposed by
the operating system to hardware limits the performance
and implementation freedom of applications. The exokernel
acts as a multiplexer of available hardware and provides
resources protection. The authors view the operating system
as a library in charge of implementing all the rest of the
behavior. The NopSys approach facilitates the development
of library operating systems.
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Unikernels [Madhavapeddy et al. 2013] are another ex-
ample of library operating systems. Unikernels enable users
to write applications in high-level languages for then spe-
cializing them into a standalone kernel at compile time. The
unikernels foundational paper presents Mirage, a unikernel
for OCaml written applications targeting commodity clouds.
They manage to provide very small appliances (200KB) with
better performance results than Unix appliances (400Mb).

In contrast to NopSys, Mirage still implements a low-level
interface for the most basic device management. For instance,
to avoid portability issues it relies on the Xen hypervisor
device model. Moreover, Mirage was designed for converting
applications target to the commodity cloud into freestanding
while NopSys aims at achieving so for general purpose ap-
plications. Finally, OCaml is a statically typed programming
language.

7 Conclusions

This paper presented NopSys, a thin software layer that pro-
vides the minimal services needed to let a language runtime
execute without an operating system. To validate our con-
tention, we turned the Cog VM, a Smalltalk virtual machine,
into a single-user application running on the bare-metal.
The result is CogNos, a self-describing and reflective pro-
gramming environment in charge of managing the whole
system: from the very basic interrupt handling up to the
software abstractions for realizing input/output such as a
FAT32 filesystem. We finally present a preliminary empirical
evaluation that suggests that the approach is viable.

The next steps in this research direction include validating
that the advantages we claimed in the introduction hold. Go-
ing forward we may select different programming languages
as vehicles of investigation, or stick with Smalltalk. For im-
proved security, it would be interesting to attempt to define a
minimal kernel that can be formally validated. For improved
assurance, it would be interesting also to compare the effort
involved in verifying a device driver written in a low-level
language, with that of one written, in say, Smalltalk. Lastly
in terms of education, we would be interested in developing
a full-fledged research operating system and compare the
level of effort of writing different components in Smalltalk
versus C.
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