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Abstract

The Real-time Specification for Java extends the Java plat-
form to support real-time processing and introduces a
region-based memory model, called scoped memory, which
side-steps the Java garbage collector. While scoped mem-
ory succeeds in protecting real-time tasks from execu-
tion time jitter, practical experience points to shortcomings.
This paper takes stock of the state of the art in mem-
ory management for RTSJ programs.

1. Introduction

Managing memory is a crucial part of most software sys-
tems. Real-time systems have traditionally relied on man-
ual memory management in programming languages such
as C which provide unfettered access to memory. By con-
trast, modern object-oriented languages take the control of
memory away from programmers and guarantee memory
safety through garbage collection. While there are unde-
niable software engineering benefits to memory safety in
terms of productivity, reliability and security, performance
is perceived to be inferior with pauses that are not accept-
able in hard-real-time applications.

The Real-time Specification for Java (RTSJ) [16] ex-
tends the Java programming language with the function-
ality needed for real-time processing. The RTSJ design-
ers recognized that without a memory management solu-
tion that would both preserve memory safety and ensure
reliable, jitter-free execution, the whole endeavor was des-
tined for failure. At the time, real-time garbage collection
was still in its infancy; some algorithms had been pub-
lished [36, 37, 40, 52] but they were, by and large, still
untested. Instead the RTSJ designers decided to offer a
region-based memory model [60]. Memory is arranged as
a tree of regions, called scoped memory areas [17]. Objects
needed by real-time tasks can be safely allocated in regions
where they will be protected from garbage collector inter-
ference and then deallocated in bulk. In a departure from
earlier work, safety is not enforced by the compiler; run-
time checks are used instead.

With the development of open source [51] as well as
commercial real-time Java virtual machines [15, 4, 1], the
RTSJ has become a viable alternative for large real-time
systems. Boeing and Purdue successfully deployed a RTSJ
controlled UAV [3]. IBM and Raytheon are using Java
to develop a comprehensive battleship computing environ-
ment [33]. Other notable applications are in audio process-
ing [5, 35], industrial control [28], trading software, and vi-
sualization. Experience implementing [10, 23, 44, 3] and
using [14, 41, 12, 46, 50] scoped memory revealed a num-
ber of drawbacks. First, there are noticeable overheads to
performing the mandated run-time checks. Second, space
usage is not optimal as objects cannot be freed individu-
ally. And finally, programming with scoped memory is er-
ror prone, leading to increased development effort. This
has spurred interest in alternatives that can complement
scoped memory. For instance, real-time garbage collection
has made substantial advances [8, 4, 55, 30, 25]. There has
also been work on increasing robustness of scoped mem-
ory programs by means of a statically verifiable type dis-
cipline [18, 63, 2]. A number of alternative programming
models tailored to particular classes of applications are also
being investigated [56, 57, 6, 58].

2. The cost of memory management

Any choice of memory management discipline involves a
tradeoff between programmer productivity, effective use of
resources, and predictability.

2.1. Programmer productivity

Manual memory management requires more development
effort than garbage collection due to the need to deal with
deallocation, as well as memory access errors that could
lead to unbounded heap corruption. Scoped memory is
somewhat better than manual memory management—heap
corruption is not possible, but memory access exceptions
may be thrown when “unsafe” references are about to be
created. Scoped memory forces a style of programming
where objects are not freed individually. This is a double-
edged sword: while it often means writing less code to free
objects, it also forces the programmer to think carefully
about which scope to use based on the intended lifetime,



and the intended reference pattern, of an object. This en-
tails additional development effort; existing libraries must
often be restructured to include scoped memory awareness.

2.2. Performance

Common wisdom holds that manual memory management
is faster than garbage collection and also that custom allo-
cators are more efficient then general purpose ones [38, 39].
The reality is more subtle. To evaluate the impact of differ-
ent memory management regimes, one must take data local-
ity and cache behavior into account. A collector can, for in-
stance, improve locality by compacting the data. Many col-
lectors allow contiguous allocation of data which is fast and
has good locality. A generational collector can outperform
(by up to 9%) manual memory management when space
is plentiful [31]. But if the available space decreases, the
performance of garbage collected programs decreases by
up to 70% over non-GCed programs. Most custom alloca-
tors do not improve performance; the exception is region-
based allocation, which can yield a 44% speed-up over a
general purpose allocator [13]. In terms of space usage, re-
gion based allocation was found to increase memory con-
sumption by up to 230% due to the inability to free indi-
vidual objects. A GCed system typically requires between
2 to 5 times more memory than manual memory manage-
ment [31]. However, for long running applications, such as
most real-time systems, GCs have the advantage of being
able to compact memory and thus avoid pathological cases
of fragmentation.

2.3. Predictability

The goal of any real-time system is to ensure that all
tasks meet their deadlines. This requires understanding and
bounding memory management jitter. In the absence of GC,
programmers manage memory via a simple interface that
consists of allocation and deallocation operations. These
operations can easily be bounded in time (for example, with
a buddy allocator). Space bounds are more tricky due to
fragmentation; the accepted techniques tend to involve ei-
ther the prevention of fragmentation by static allocation or
overprovisioning.

In most garbage collectors, allocations can in the worst
case result in a full traversal of the entire heap. This presents
a problem: if the collector is given the freedom to inter-
rupt or prolong the execution of heap operations, how can
we reason about worst-case behavior? A number of col-
lectors attempt to solve this problem—ranging from tight
bounds on the length of interruptions of each memory op-
eration [42], to attempts to hide all collector activity inside
the slack in the real-time schedule [30]. More recent ap-
proaches [8, 4, 49] rely on a particular understanding of
RTGC, in which collector interruptions are viewed as be-
nign if they occur with well-known periodicity. There is no

agreement as to which approach is best. Worse, there is no
agreement on what it means for a collector to be real-time.

Collector Pause Time. When measuring collector respon-
siveness, the most commonly advertised metric is pause
time. This metric makes sense for collectors that perform
all of their work at once. But most real-time collectors split
work between multiple pauses, meaning that we are more
interested in the total effect incurred by all of the pauses
within a specific release of a task. The pause-time obses-
sion has driven some GC designers to strategies in which
there are no pauses [30, 47]. These collectors still retain al-
location procedures that take non-zero time, and have read
and/or write barriers that can prolong the execution of tasks
by a non-trivial, and often unreported, amount.

Minimum Mutator Utilization. Cheng and Blelloch devel-
oped a metric for predictability—the minimum mutator uti-
lization or MMU [20]. MMU is represented as a graph in
which the x-axis is the time spent executing a task, and
the y-axis is the minimum fraction of that time spent do-
ing useful application work (or “mutator” work). A MMU
of 50% means that a task will spend, at most, half of its
time doing garbage collection. But is MMU useful for com-
paring different real-time collectors? Collectors often man-
date special compilation strategies that introduce non-trivial
amounts of overhead. Typically, these overheads cannot be
treated as pauses or interruptions—they are simply too fine-
grained. Thus, MMU quantifies only a portion of collec-
tor overheads. Figure 1 illustrates this: running the program
without GC is faster across the board than running with the
RTGC at 50% MMU. Further, the worst-case under RTGC
is 2.8 times greater than the worst-case without GC, lead-
ing to an “effective” MMU of 38%. (Note that the target
MMU depends on the application, it has been reported that
a MMU target of 75% suffices for many real applications.)

Worst Case Execution Time. Perhaps the most sensible ap-
proach to understanding RTGC is to consider the worst-case
execution time. This is not a new idea. Nilsen [42] showed
that his collector has O(1) heap accesses and O(n) alloca-
tions. If an analytical analysis of the worst-case time spent
in reads, writes, and allocations is possible, it is likely “as
good as it gets” when it comes to real-time performance
metrics. MMU is then only useful if the collector incurs
costs outside of heap operations.

3. Region-based allocation

3.1. Scoped Memory

In the RTSJ, storage for an allocation request performed
by a real-time task is serviced differently from stan-
dard Java allocation. The RTSJ extends the Java memory
management model to include dynamically checked re-
gions known as scoped memory areas represented by
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Figure 1: Performance of a 10Hz periodic real-time task [50]. The x-axis shows releases, the y-axis time to complete a release. The worst
observed case for were 15ms (a), 21ms (b), and 41ms (c). The difference between (a) and (b) is due to the presence of RTSJ read and
write barriers. The average times were 11.2ms (a) and 15.4ms (b and c¢). Throughput is no worse with GC than with scoped memory on an
Athlon, 1.6GHz, 1GB, Linux 2.4.7-timesys-3.1.214, with Ovm and GCC 4.0.1.

subclasses of ScopedMemory. A memory area is an al-
location context that provides a pool of memory shared
by threads executing within it. Individual objects al-
located in a memory area cannot be deallocated; in-
stead, an entire area is torn down as soon as all threads
exit it. The RTSJ defines two distinguished scopes: im-
mortal and heap memory, respectively for objects with
unbounded lifetimes and objects that must be garbage col-
lected. Two new kinds of threads are also introduced:
real-time threads that are scheduled by a real-time sched-
uler and may access scoped memory areas (Realtime-—
Thread); and no heap real-time threads (NoHeapReal-
timeThread), which are real-time threads protected
from pauses. Dynamically enforced safety rules check that
a memory scope with a longer lifetime does not hold a ref-
erence to an object allocated in a memory scope with a
shorter lifetime. This means that heap memory and immor-
tal memory cannot hold references to objects allocated in
scoped memory, nor can a scoped memory area hold a ref-
erence to an object allocated in an inner scope. Memory
areas have an enter () method that permits applica-
tion code to execute within a scope. Using nested calls,
a thread may enter multiple scopes, dynamically build-
ing up a scope hierarchy. Misuse of these methods is pun-
ished by dynamic errors; I1legalAssignmentError
and MemoryAccessError are thrown on attempted vi-
olations of the memory access rules. Reference counting
on enters ensures that objects allocated in a scope are re-
claimed and finalized when the last thread leaves the
scope.

The cost of using scoped memory in Ovm [3] is pre-
dictable. Read and write are O(1). Write barriers are added
to every assignment into a field of reference type (i.e.
Object or one of its subtypes). There is a fast path, in-
lined by the compiler, for the case of local writes and slow
path that uses range checks [44]. Constant-time read barri-
ers are added to loads [50]. Objects are allocated out of con-

tiguous blocks of memory. The cost of new is O(n) due to
memory zeroing. No additional space is required to store
scope pointers, as the VM instead maps pages to scopes.
Other design choices are discussed in [23, 24, 10].

As there is no isolation between real-time and non-real-
time parts of the system, if a real-time task tries to acquire
a monitor held by a non-real-time thread, the real-time task
may experience unbounded locking in case the Java thread
triggers GC. A less catastrophic source of blocking is due
to finalization. In a scope, finalization occurs when the last
thread exits and no thread may re-enter the scope until fi-
nalization is complete. With GC, the problem is less severe
as finalization can be offloaded to a separate thread.

Programming with scoped memory entails a loss of com-
positionality. Components, when tested independently, may
work just fine, and break when put in a particular scoped
memory context. This is because scoped memory adds an
extra dimension—where each object has been allocated—
that complicates reasoning about program correctness. De-
sign patterns and idioms for programming effectively with
scoped memory are discussed in [46, 11, 14]. Following
these guidelines simplifies RTSJ development.

3.2. Scoped Types

While the RTSJ designers chose to enforce memory
safety with run-time checks, this is not the only alterna-
tive. Memory-safe region-based allocation does not require
run-time checks [27, 61, 29]; instead, regions can be added
to the language’s type system. The first region types to sup-
port subtyping and inheritance appeared in [21]. A more
recent strand of work seeks to adapt the notion of owner-
ship types of [43] to deal with scoped memory [18]. Scoped
types [63, 2], for instance, are an ownership-based ap-
proach which does not require changes to the source lan-
guage.



3.3. Safety Critical Java

The on-going safety critical Java standardization effort [34]
seeks to define a subset of the JSR that will be easier to vali-
date and prove correct in the context of safety-critical appli-
cations. Correctness of memory operations has been iden-
tified as one of the key concerns. To address this, the ex-
pert group is considering a variant of scoped types [2] that is
backwards compatible with the RTSJ and VM-independent.

3.4. Alternative Programming Models

Some of the complexities and pitfalls of the RTSJ can be
attributed to the desire of a general purpose programming
model for real-time systems. A number of recent results of-
fered programming models that geared to particular tasks.
Eventrons [56] are a programming abstraction that target
highly responsive systems. They require very little sup-
port from the virtual machine, provide static safety guar-
antees and have been shown to be adequate for running
tasks at periods as low as 45usecs. An Eventron is a group
of objects allocated in non-GCed memory with an associ-
ated real-time task. Safety is guaranteed by an analysis that
runs at Eventron instantiation. Reflexes [57] relax some of
the constraints of Eventron: they allow allocation in a spe-
cial region that is cleared after each release and, instead
of initialization-time analysis they are validated by a type
checker similar to [2]. Exotasks [6] and StreamFlexes [58]
extend the Eventron/Reflex programming model to graphs
of tasks connected by data channels.

4. Real-time Garbage collection

Garbage collection removes some of the burden of memory
management from the application programmer by automat-
ically freeing all or most of the memory that is no longer in
use. But high performance collectors are typically designed
to free all unused objects in one step. Such long “pauses”
lead to unpredictable timing behavior, with tasks occasion-
ally taking much longer than expected. Further, much of GC
research has been concerned with optimizing for throughput
rather than uniform overhead and responsiveness. However,
recent work on RTGC has lead to systems that exhibit levels
of predictability suitable for many real-time applications.
Some of these collectors have been productized [53, 4, 59].

4.1. Application-Collector Interaction

RTGC:s split collector work into small increments. This
implies allowing the application to run even as the collec-
tor is in the middle of traversing the heap in search of ob-
jects that are “reachable,” that is, objects that should not
be freed. But allowing the application to run while graph
reachability is being determined is hard—the application
may arbitrarily change the shape of the graph, in the worst
case leading to the collector freeing objects prematurely.
More difficulties are added if the collector has the power

to defragment the heap. Defragmentation involves mov-
ing objects—thus in an incremental defragmenting collec-
tor, the application must be able access objects while they
are in motion. Both of these issues—the application chang-
ing the shape of the graph and the collector moving ob-
jects used by the application—are typically solved with
compiler-inserted barriers. A barrier is a hint to the com-
piler/runtime given that a heap access operation should be
compiled specially. Typical examples include the Brooks
barrier [19], where every heap access performs an addi-
tional indirection; these barriers are often sufficient for al-
lowing the application to use objects even as they are being
copied. More sophisticated barriers include the Yuasa bar-
rier [62], which replaces writes of object reference fields in
the heap with a short code snippet that is sufficient for keep-
ing the collector up-to-date on heap changes, thus prevent-
ing any reachable objects from being freed.

Production RTGCs such as Bacon et al’s Metronome [4]
typically use variants of the Brooks and Yuasa barriers, as
this is the fastest known combination for ensuring sound
application-collector interaction. However, some collectors,
such as the one originally proposed by [30] are known to use
much heavier barriers, where reads of object reference fields
in the heap are replaced with longer sequences of code.
Also, [55] uses barriers on assignment of pointer local vari-
ables, which is likely to cause a significant throughput hit
but is very effective in reducing worst-case pause times due
to stack scanning [54]. See Table 1 for the code typically
used in the Metronome, Henriksson, and JamaicaVM barri-
ers. For a thorough review of barrier techniques, see [45].

4.2. Collector Scheduling

The main property that differentiates real-time collectors
from traditional collectors is scheduling. Whereas a tradi-
tional collector preempts the mutator once, a RTGC will
split up its work into increments allowing the mutator to
make progress even if the collector is not finished. But how
are these collector increments scheduled? A poor choice
of scheduling strategy can be devastating, leading to too
much overhead or preventing the collector from freeing
memory quickly enough to keep up with the mutator’s de-
mands. Early incremental collectors such as [9] taxed all
heap operations—including, e.g., reads—with increments
of collector work. In the worst case, the execution time of
every memory read in a real-time task would include the job
of copying an entire object. This is unacceptable in mod-
ern systems, as heap reads are frequent and objects may be
large. Thus, modern RTGCs have more clever scheduling
strategies, which we review next.

Fine-grained Work-based. A work-based collector taxes
units of application work with units of collector work. The
Baker collector [9], for example, will make a small unit of
progress on every heap read and a larger unit of progress on



[ Operation / Barrier [ No Barriers | Metronome [ Henriksson [ JamaicaVM |
Local Reference Assignment | a = b a=> a=>b mark (b)
a=>

Primitive Heap Load a = b—>f | a = b->forward->f a = b->forward->f a = b—>f

Reference Heap Load a = b—>f | a = b->forward->f a = b->forward->f a = b—>f
mark (a) mark (a)

Primitive Heap Store a->f = b | a—>forward->f = a->forward->f = b a—>f = Db
Reference Heap Store a->f = b | mark (a->forward->f) mark (b) mark (b)

a->forward->f = b->forward | a->forward->f = b->forward | a—>f =D

Table 1: Code for different barrier types. The Metronome [8, 4] uses a variation of the Yuasa barrier in combination with a Brooks barrier.
The Henriksson [30] collector uses a Brooks barrier in combination with barriers on reference heap loads and stores that accomplish
the same goals as the Yuasa barrier but at a higher overhead. The JamaicaVM [55] barriers are the heaviest (requiring local variable
assignment to be instrumented), but can be used to aggressively reduce pause times.

RTThead ———>[  |——>
RTThead ——»  f———[ |—>
RTGC >

Figure 2: Slack-based RTGC scheduling. The RTGC only runs
when none of the real-time threads are running.
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Figure 3: Time-based RTGC scheduling. The RTGC has the
highest priority but only interrupts the application at well-
defined intervals.

every heap allocation. But if the goal is to ensure that the
collector “keeps up” with allocation demand, then taxing
allocation requests is sufficient. This is the strategy taken
by modern real-time work-based collectors [55]. We re-
fer to this scheme as fine-grained work-based because it
does not allow for amortization—e.g., imposing overheads
on groups of allocation requests rather than individual re-
quests. With a fine-grained collector interference is highly
predictable. But, the lack of amortization, and the need for
very small increments results in a constrained collector de-
sign. For example, JamaicaVM splits objects and arrays into
32-byte blocks causing space overheads due to round-up
and time overheads due to additional indirections.

Slack-based. With Henriksson’s slack-based [30] ap-
proach, the collector works only when real-time tasks are
not running. This allows real-time tasks to run fast, yield-
ing the smallest pause times and the highest MMU, but
requires that the programmer provisions for the collec-

tor when scheduling the system. Slack-based collec-
tors require an accurate characterization of the alloca-
tion rate of the application. As slack is typically longer
than the short increments of a fine-grained work-based col-
lector, algorithms are somewhat less constrained—the
collector may assume that a larger amount of collector ac-
tivity is likely to proceed without interruption. A variant of
Henriksson’s approach is used in [59].

Time-based. Instead of taxing application work or requir-
ing that slack be left in the schedule for the collector to run,
Bacon et al’s time-based [8, 4] approach schedules the col-
lector at regular predetermined intervals. The collector is
configured a priori with two tuning parameters: the length
of the collector interval ¢ and the length of the application
(mutator) interval m. The collector always allows the ap-
plication to run for at least m time without interruption,
and never interrupts the application for longer than c. This
yields predictable pause times and an MMU that converges
to m/(c + m). Time-based collectors require a character-
ization of the worst-case allocation rate. Leaving slack for
the collector is not required; instead, the collector will steal
time from the application according to the preset sched-
ule. Unlike both work-based and slack-based designs, time-
based systems have a well-known and typically long collec-
tor increment size (ranging from 12ms [8] to under a mil-
lisecond [4, 49]), which tends to make the collector easier
to design.

Amortized work-based. Time-based and slack-based ap-
proaches both tend to have longer collector increments than
the fine-grained work-based approach, leading to a more ef-
ficient collector. But the work-based approach is attractive
as it always keeps up with any allocation rate. This begs
the question—what if we allowed amortization? For exam-
ple, every N bytes allocated we may perform O(N) collec-
tor work. Thus, allocation would still be linear in time under
an amortized worst-case analysis. Choosing a large IV leads
to long collector increments and a simpler design, while
choosing a small IV reduces pause times while constrain-
ing the collector. The most extreme example of amortized
work-based collectors is the traditional stop-the-world col-



lector, where N = Mt — M7, where M is the total size of
the heap and M7, is the amount of bytes that the application
is using. While this may appear undesirable for real-time
systems, even the stop-the-world design has found its uses
in applications that have a high demand for predictability:
the JAviator [6] uses heaps managed by a non-incremental
collector.

Concurrent. Concurrent collectors do all of their work on
a separate set of processors. The resulting design promises
little or no collector interference, but like time-based and
slack-based systems requires knowing the allocation rate.
Concurrent RTGCs are likely to become more common as
multiprocessing becomes more prevalent.

4.3. New Developments

RTGCs still incur high overheads relative to both man-
ual memory management and non-real-time garbage col-
lectors due to a combination of expensive barriers, mem-
ory overheads, and the need for more complex collection
algorithms. But overall overheads can be reduced by re-
ducing the amount of collector work. Examples of collec-
tors that aim to reduce collector work are the Syncopated
Metronome [7], the Generational Metronome [26], and the
Hierarchical Real-time Garbage Collector [49]. The latter
collects different parts of the heap (heaplets) at different
priorities. For example, a private heaplet may be given to
real-time tasks, with those tasks only yielding to the pri-
vate heaplet’s collector. As this heaplet will be smaller than
the total heap, which may include non-real-time state, and
is likely to have a lower allocation rate (since non-real-time
allocation is not included), the length and frequency of col-
lector interruptions experienced by the real-time tasks is re-
duced.

Combining multiprocessing and RTGC continues to be
an exciting area of research. Ideally, adding an RTGC to a
multiprocessor application should not increase the amount
of inter-processor communication, nor should increasing
the number of processors have an adverse effect on pause
time. Current RTGCs are far from this ideal. For example,
the Metronome can be extended to a multiprocessor setting
by having all processors yield to the collector during a col-
lector increment. But as the number of processors grows, so
too the amount of work required to stop all threads grows.
However, there is a growing body of work that aims to pro-
duce a multiprocessor RTGC in which it is not necessary to
stop all threads. The first collector to claim support for mul-
tiprocessor real-time is [20]. This work targets the ML pro-
gramming language and exploits the property that heap ob-
jects are rarely modified. It requires the use of locking to
synchronize between the collector and application, which
leads to a non-trivial amount of worst-case overhead. Sap-
phire [32] is the first Java collector with high performance
on multiprocessors, but relies heavily on the Java memory

model and does not provide strong timing guarantees for ap-
plications that use non-blocking algorithms. Stopless of Pi-
zlo et al [47] is the first collector to support strong time
bounds even if non-blocking algorithms are used. Pizlo et
al further show how a probabilistic understanding of time
bounds can be used to enhance RTGC performance on mul-
tiprocessors [48]. Click et al. [22] show how custom hard-
ware can be used to create a soft real-time collector.

5. Conclusion

At present, doing memory management in real-time Java
places the burden on the programmer to choose one the
of many programming models which we have reviewed. A
careful choice is likely to lead to excellent software engi-
neering benefits, and in some cases, performance that is on-
par with C code [56]. But as we have shown, research into
RTGC:s is coming increasingly close to the goal of a uni-
versal programming model—where safety and easy devel-
opment carry no runtime cost.
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