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Abstract

This paper develops an approach to protein backbone NMR assignment that effectively assigns large
proteins while using limited sets of triple-resonance experiments. Our approach handles proteins with large
fractions of missing data and many ambiguous pairs of pseudoresidues, and provides a statistical assess-
ment of confidence in global and position-specific assignments. The approach is tested on an extensive set of
experimental and synthetic data of up to 723 residues, with match tolerances of up to 0.5 ppm for Ca and
Cb resonance types. The tests show that the approach is particularly helpful when data contain experi-
mental noise and require large match tolerances. The keys to the approach are an empirical Bayesian
probability model that rigorously accounts for uncertainty in the data at all stages in the analysis, and a
hybrid stochastic tree-based search algorithm that effectively explores the large space of possible assign-
ments.

Introduction

Backbone resonance assignment is required for
most current procedures of NMR-based protein
structure determination (Wüthrich, 2003). The
basic input to an assignment procedure is the pri-
mary sequence and a set of pseudoresidues com-
piled from peaks in through-bond experiments
such as HNCA and HN(CO)CA. As illustrated in
Figure 1a, each pseudoresidue contains both
within-residue chemical shifts from one residue
and sequential chemical shifts from the preceding
residue. A minimal set of chemical shifts includes
within-residue H, N, and Ca, along with sequential
Ca. When available, within-residue and sequential

Cb, C¢, and Ha are also included. The goal of the
assignment is to establish the origin of each pseu-
doresidue, i.e., a mapping between pseudoresidues
and positions in the primary sequence. This is
accomplished by matching the sequential chemical
shifts of one pseudoresidue to the within-residue
chemical shifts of another, and by aligning the
matched pair to sequentially adjacent amino acids
for which the observed chemical shifts are plausi-
ble. Each pseudoresidue can typically participate
in multiple possible matches and alignments, and a
one-to-one globally consistent mapping must be
chosen from the combinatorial possibilities.

Significant progress has been made in the
development of automated resonance assignment
methods, allowing researchers to accurately and
quickly assign many proteins (Moseley and
Montelione, 1999). However, the desire to increase
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throughput in NMR-based studies demands
assignment algorithms that handle increasingly
sparse data sets. Sparse data arise when the num-
ber, diversity, and quality of NMR experiments is
low relative to the protein size. Characteristics of
sparse data include limited sets of resonance types,
large fractions of missing chemical shifts, entirely
missing pseudoresidues for some residue positions,
and spurious noise pseudoresidues. Furthermore,
chemical shifts in the pseudoresidues may be
obtained from only one or two peaks, making their
values less certain and more subject to peak pick-
ing error. Therefore large match tolerances are
required to establish sequential connectivities
between chemical shifts.

Working with sparse data has important
implications for scoring matches and alignments of
pseudoresidues. Existing scoring functions often
rely at least in part on subjectively chosen
parameters and functional forms. When data are
informative the choice of the scoring function does
not significantly impact the conclusions of the

assignment. When data are sparse, however, the
choice can severely affect the accuracy of
the result. It is therefore important to determine
the scoring functions in the most objective manner,
e.g., empirically on the basis of previously assigned
data sets. In addition, noise and sparsity of the
data typically result in a large number of globally
consistent mappings. On one hand, stochastic
variation and the approximate nature of the scores
makes it dangerous to consider only the best
mapping found. On the other hand, only a few
positions will be reliably assigned if we make
conclusions on the basis of all the detected globally
consistent mappings. The existing scoring func-
tions do not allow us to select the relevant map-
pings for conclusions because it is difficult to
interpret the relative values of their scores. For
example, if the score of the best mapping found is
twice the score of an alternative mapping, it is not
clear whether both mappings, or only the best one,
are plausible given the data. Therefore, sparse data
require a new scoring function capable of selecting

Figure 1. Matching pseudoresidues to each other and aligning them to the protein sequence (a) in text notation, (b) in mathematical
notation.
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a plausible subset out of all globally consistent
candidate mappings.

Sparse data also have important implications
for algorithms for finding the mappings. Noise and
sparsity result in combinatorially large spaces of
candidate mappings with essentially flat scoring
landscapes. A typical approach to reducing the
size of the search space is to consider ‘‘unambig-
uous chains’’ of pseudoresidues as fixed. However,
this approach is not applicable to sparse data
because incorrect matches will likely appear
unambiguous due to missing resonance types and
missing chemical shifts. New algorithms are nec-
essary that are capable of efficiently traversing
such landscapes while considering the possibility
of missing pseudoresidues at any position in the
primary sequence.

This paper presents an approach for resonance
assignment of sparse NMR data that overcomes
the above mathematical and algorithmic chal-
lenges. We develop a scoring function based on an
empirical Bayesian statistical model. Bayesian
modeling has recently been successfully applied to
determine three-dimensional protein structures
from assigned NMR data (Rieping et al. 2005),
and the same conceptual approach is employed
here. Bayesian modeling involves more than just
an application of Bayes rule, and relies upon a
joint probability distribution of all observed and
unobserved quantities in the problem. In particu-
lar, one specifies the probability distribution of the
observed data, and the joint prior distributions of
the parameters of this distribution. The prior dis-
tributions acknowledge our uncertainty in the
parameters. The qualification ‘‘empirical Bayes’’
applies when one takes advantage of the current
and previously analyzed data sets to develop the
prior distributions. Once the probability model is
specified, we employ integration steps to average
out the parameters that are not of our primary
interest, and eventually apply Bayes rule to obtain
model-based scoring functions. We then draw
conclusions on the basis of a subset of all detected
globally consistent mappings, selected according
to their posterior probabilities.

This paper addresses the algorithmic challenges
of sparse data by developing a hybrid stochastic
search algorithm. The algorithm combines the
advantages of systematic branch-and-bound
search with desirable properties of stochastic
techniques such as simulated annealing, Tabu

search and population-based search, and therefore
has better potential performance than any of these
methods. The algorithm stochastically explores the
efficient enumeration-enhanced tree-based search
space we developed in Vitek et al. (2005). It con-
siders the possibility of a missing pseudoresidue
for each position, and employs adaptive learning
techniques as well as multiple strategies for
escaping locally optimal solutions. The output of
the algorithm is a set of globally consistent map-
pings that have high posterior probabilities.

We test our approach on a wide range of
experimental and synthetic data sets and demon-
strate that it reliably and accurately assigns large
portions of proteins given only sparse data. The
results show that our approach is typically more
accurate than the recently-published program
CASA, which was demonstrated to be represen-
tative of a number of current automated assign-
ment packages (Wang et al., 2005). In comparison
to the popular program MARS (Jung and
Zweckstetter 2004), our approach increases the
number of reliably and accurately assigned resi-
dues when the data are noisy and require large
match tolerances.

Methods

Input data

The input data to our method are the primary
sequence of a protein, and a set of pseudoresidues
compiled from triple-resonance experiments such
as HN(CO)CA, HNCA, HN(CO)CACB or
HNCB. Similarly to other automated methods of
resonance assignment (e.g., Buchler et al., 1997;
Coggins and Zhou, 2003; Hitchens et al., 2003;
Jung and Zweckstetter, 2004) our method does not
address peak picking. Thus the pseudoresidues
must be compiled from spectra manually or by
other means, prior to the analysis.

The pseudoresidues are illustrated in Figure 1a.
They contain chemical shifts of N, H, C¢, Ca, Cb

and Ha resonance types from the same position in
the protein sequence. We call these the within-
residue chemical shifts. Pseudoresidues also con-
tain chemical shifts of C¢, Ca, Cb and Ha resonance
types of the preceding residue, which we call the
sequential chemical shifts. In sparse data, only a
subset of C¢, Ca, Cb and Ha resonance types will
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typically be present, and some of the expected
chemical shifts will be missing. Some expected
pseudoresidues will typically be missing, and spu-
rious noise pseudoresidues will be present. The
first position in the sequence and the Proline resi-
dues do not have experimental pseudoresidues.

An optional input to the method is the pre-
dicted secondary structure of the protein (e.g.,
using PSIPRED (McGuffin et al., 2000)). Pre-
dicted secondary structure is used for efficient
amino acid typing and typically increases the
number of reliably assigned positions. All the re-
sults discussed in the paper used secondary struc-
ture prediction as input.

Probability model for scoring candidate mappings

To establish a Bayesian inferential procedure for
resonance assignment we take the following four
steps (Gelman et al., 1995); Figure 1b illustrates
the key terms and their mathematical notation. (1)
We note that the observed chemical shifts di in
pseudoresidues i are random variables subject to
noise and stochastic variation, and we specify their
probability distribution. The distribution depends
upon unknown parameters, namely the mappings
Mj of residue positions j in the primary sequence
to pseudoresidues, and the means d!j and variances
r2j of the chemical shifts at the residue positions.
Determining the mappings is our primary goal.
The means and the variances are not of particular
interest, but are rather ‘‘nuisance parameters’’
required for a complete specification of the prob-
ability distribution. (2) We quantify our knowl-
edge regarding plausible values of all parameters,
including nuisance parameters, in terms of their
prior probability distributions. These priors are
determined from existing databases, previously
assigned spectra, and statistical considerations. (3)
We ‘‘remove’’ the nuisance parameters from the
probability distribution by taking an average (i.e.,
integrating) with respect to their prior distribu-
tions. This yields an ‘‘integrated’’ distribution of
chemical shifts that depends only on their map-
pings from positions in the sequence. (4) We
obtain a posterior distribution of the mappings
conditional on the observed chemical shifts. This
allows our search algorithm to evaluate each
candidate mapping, and use for inference only
those that are plausible. (5) The posterior distri-
bution of the plausible solutions allows us to assess

the information content in the data, and to
quantitate the confidence in individual resonance
assignments in terms of their consistency across
the plausible solutions. We detail these steps be-
low.

Probability distribution of the observed data
Consider a within-residue and a sequential mea-
surement of a resonance (say, Ca) at residue po-
sition j. Denote by dsi the observed sequential
chemical shift, which is in pseudoresidue i, and by
dwi0 the observed within-residue chemical shift, in
pseudoresidue i¢. Since peak locations vary across
spectra, and every peak picking procedure is sub-
ject to some errors, the observed chemical shifts
are rarely the same. We assume that they are
independent and Normally distributed random
variables, centered at the ‘‘true’’ chemical shift d!j
with a position-specific variance r2j . In our nota-
tion, the probability density function of dsi and dwi0
is

fðdsMj; d
w
Mj0 j d

!
j ; r

2
j ;MjÞ ¼

1ffiffiffiffiffiffi
2p

p
rj
e
%

ðdsMj
%d!

j
Þ2

2r2
j

& 1ffiffiffiffiffiffi
2p

p
rj
e
%

ðdw
Mj0

%d!
j
Þ2

2r2
j ð1Þ

The unknown parameters of the probability dis-
tribution are d!j and r2j , as well as the mapping
Mj ¼ i from position index j to pseudoresidue
index i. The mapping Mj is of interest in our
assignment procedure, and the other parameters
will be integrated out with respect to their prior
distributions. To simplify notation, we hereafter
denote the observed chemical shifts as di instead of
dMj, with the understanding that the choice of the
index i depends on the mapping Mj ¼ i.

Prior distributions for amino acid typing
The identification of plausible distributions for the
‘‘true’’ chemical shifts d!j for each residue, also
known as amino acid typing, has been the subject
of much research. It is natural to determine this
distribution from a database of previously
assigned chemical shifts such as the BMRB (Sea-
vey et al., 1991) or RefDB (Zhang et al., 2003).
One often assumes that the plausible chemical
shifts are independent across resonance types, and
are Normally distributed with means and
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variances calculated from the database. One can
also specify a distribution that does not rely on the
Normal functional form (Wan et al., 2004; Egh-
balnia et al., 2005), or study the correlation
structure of resonance types within the same ami-
no acid (Marin et al., 2004). The distribution is
more informative if it uses predicted secondary
structure (Jung and Zweckstetter, 2004; Wan
et al., 2004; Eghbalnia et al., 2005). All these
approaches are equally acceptable in Bayesian
modeling.

In this paper we use the form that has been
successfully used in Jung and Zweckstetter (2004).
Specifically, we predict the secondary structure of
the protein using PSIPRED (McGuffin et al.,
2000), and calculate the predicted chemical shift dpj
for each resonance type and secondary structure
using the algorithm described in Wan and Jar-
detzky (2002). We further assume that chemical
shifts in the database are Normally distributed,
centered at the predicted values dpj with standard
deviations vj as empirically determined in Jung and
Zweckstetter (2004). The specific values of vj are
0.82 ppm for H, 4.3 ppm for N, 1.2 ppm for Ca,
1.1 ppm for Cb, 1.7 ppm for C¢, and 0.82 ppm for
Ha. In our notation, the prior density of the ‘‘true’’
chemical shift is

fðd!j Þ ¼
1ffiffiffiffiffiffi
2p

p
vj
e
%

ðd!
j
%dp

j
Þ2

2v2
j ð2Þ

Prior distributions of experimental variances
In contrast to amino acid typing, empirical anal-
ysis of experimental variances r2j has received little
attention. Existing assignment tools proceed by
scoring matches between chemical shifts with ad
hoc functions such as uniform scores (Atreya
et al., 2000; Andrec and Levy, 2002; Coggins and
Zhou, 2003; Jung and Zweckstetter, 2004), or bell-
shaped scores (Bartels et al., 1997; Buchler et al.,
1997; Zimmerman et al., 1997; Hitchens et al.,
2003) with pre-specified parameters. Arbitrarily
defined, the scores undermine the performance of
the assignment algorithms. The Bayesian
approach, on the other hand, empirically derives
the distribution of plausible variances from previ-
ously assigned data.

We study the empirical distribution of vari-
ances r2j using 6 experimental data sets provided as

a test for the AutoAssign program (Zimmerman
et al., 1997). The same approach can be performed
using any other training data set that is judged
representative of the assignment problem at hand.
For each of the 6 proteins, we consider the pseu-
doresidues and their reference assignments deter-
mined by AutoAssign, and compute histograms of
differences in chemical shifts mapped to the same
atom. Figure 2 shows the histograms combined
across the proteins. One can see that AutoAssign
provides a conservative view of the plausible val-
ues, allowing fairly loose matches. We truncate the
distributions by desired match tolerances, translate
the chemical shift differences into estimates of
experimental variances by computing ðdsi % dwi0 Þ

2=2,
and fit the distributions of the estimates with the
inverse- v2 distribution with 1 degree of freedom.
Inverse- v2 is often used to model the prior for the
variance of the Normal distribution (Gelman
et al., 1995). It is best defined by saying that
r2 ' Inv% v21 is equivalent to 1=r2 ' v21. In our
notation, the prior distribution of experimental
variances r2j has the probability density

fðr2j Þ ¼
1ffiffiffiffiffiffi
2p

p
r3j

e
% S2

2r2
j ð3Þ

The fitted parameters S2 for large (moderate)
match tolerances used in the experimental section
are 0.0016 (0.0012) ppm2 for C¢, 0.004
(0.002) ppm2 for Ca, 0.005 (0.005) ppm2 for Cb

and 0.00005 (0.00005) ppm2 for Ha (Vitek, 2005).

Integrated probability distribution of the observed
data
In the Bayesian framework, the prior distributions
in Equations (2) and (3) are used to integrate over
the unknown mean and variance in Equation (1).
If we assume that the prior distributions are
independent, the integral is computed as

fðdsi ; d
w
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i0 jd
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2
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5

& fðr2j Þ dðr
2
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After an analytical integration we obtain the fol-
lowing approximate result. The approximation
relies upon the fact that the range of chemical
shifts is orders of magnitude larger than the
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variance of the signal from a particular nucleus
(Vitek, 2005):
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i0 jMj ¼ iÞ ( 1ffiffiffi

p
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e
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þds
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Þ=2%dp
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2p

p
S

1
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2

2S2

ð5Þ

The first term is the probability density of a Nor-
mal distribution, and it approximately equals the
prior distribution for amino acid typing. The role
of this term is to quantify the plausibility of
aligning the chemical shifts at position j. The sec-
ond term appears in Equation (5) only when both
dwi0 and dsi are present. It is the density of the
Cauchy probability distribution, and its role is to
quantify the plausibility of a match between two
chemical shifts.

Figure 3 compares the Cauchy distribution
with the Normal distribution where the standard
deviations are a third of the match tolerances,

i.e., 0.25/3 for C¢, 0.5/3 for Ca and Cb, and 0.05/
3 for Ha. Such Normal distributions are tradi-
tionally used to score chemical shift matches.
One can see that the Cauchy distribution is more
concentrated around zero than the Normal dis-
tribution and thus supports better discrimination
of a high quality match. At the same time it has
heavier tails, reflecting the plausibility of some
relatively large differences in matched chemical
shifts.

Equation (5) defines the integrated probability
distribution of one position and one amino acid
type. The key to inference, however, is obtaining a
globally consistent set of matches and alignments.
Thus we consider a full mapping which maps each
position to at most one pseudoresidue, and each
pseudoresidue to at most one position. Positions
not mapped to an observed pseudoresidue are
mapped to placeholders for entirely missing data.
If we index the distributions in Equation (5) by
resonance type t (over T types) and position j (over
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Figure 2. Distribution of absolute differences in matched chemical shifts for the data from Zimmerman et al. (1997) as assigned by
AutoAssign.
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J positions) and assume that they are conditionally
independent given the mapping, then the inte-
grated probability distribution of all chemical
shifts d given a full mapping fM1; . . . ;MJg is

fðdjM1; . . . ;MJÞ ¼
YJ

j¼1

YT

t¼1

ftjðdsti; d
w
ti jMj ¼ iÞ

ð6Þ

Posterior probabilities
The posterior probability of a full mapping
fM1; . . . ;MJg is obtained by specifying its prior
probability PrðM1; . . . ;MJÞ and by applying
Bayes rule

PrðM1; . . . ;MJjdÞ / fðdjM1; . . . ;MJÞ
& PrðM1; . . . ;MJÞ ð7Þ

In our approach, the prior probability reflects our
preference for assigning as many positions as
possible. We quantify this using corrected Akaike
Information Criterion (cAIC) prior weights
(Burnham and Anderson, 2002), which penalize
appropriately, but not too strictly, each observed
and unassigned chemical shift. On the )log scale,

% log PrðM1; . . . ;MJÞ ¼ I0 *N=ðN% JTÞ ð8Þ

where I¢ is the number of unassigned chemical
shifts, N is the total number of observed chemical
shifts, and J and T are respectively the protein
length and the number of resonance types.

We combine Equations (5)–(8), i.e., the inte-
grated probability distribution of chemical shifts
and the Akaike Information Criterion penalty for
unassigned chemical shifts, into a posterior prob-
ability of a full mapping M. The result on the )log
scale (determined up to an additive constant) is
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Figure 3. Distributions of chemical shift match scores. Solid lines: Cauchy distributions used in MBA, obtained from AutoAssign
data (Zimmerman et al., 1997). Dashed lines: Normal distributions with standard deviations taken as a third of the corresponding
match tolerances.
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Recall that the choice of index i of di in
Equation (9) depends on the mapping Mj through
the relationship Mj ¼ i. Thus Equation (9) will be
used by the search algorithm to score candidate
mappings.

Our goal is to determine the mapping
fM!

1; . . . ;M
!
Jg maximizing the posterior proba-

bility or, equivalently, minimizing Equation (9).
When the data are informative, the best mapping
fM!

1; . . . ;M
!
Jg is usually the only globally con-

sistent one that can be found. With sparse data,
however, a large number of globally consistent
mappings can exist. An advantage of the proba-
bility model is that it allows us to determine which
mappings, out of all possible, should be consid-
ered. Specifically, we discard mappings that are
100 times less likely a posteriori than the best
mapping fM!

1; . . . ;M
!
Jg found. Thus we search

for all mappings fM1; . . . ;MJg satisfying

% log PrðM1; . . . ;MJjdÞ
+ % log PrðM!

1; . . . ;M
!
JjdÞ þ log 100

ð10Þ

The posterior probabilities PrðM1; . . . ;MJjdÞ
of the selected mappings are standardized to form
a proper probability distribution as

fPrðM1; . . . ;MJjdÞ ¼
PrðM1; . . . ;MJjdÞP
PrðM1; . . . ;MJjdÞ

ð11Þ

where the summation is over all mapping satisfy-
ing Equation (10). Thus our approach applies the
normalization to selected mappings having high
posterior probability as opposed to all possible
globally consistent mappings. Making conclusions
on the basis of such normalized distributions is an
example of selective model averaging (Kass and
Raftery, 1995; Hoeting et al., 1999). The approach
is particularly useful for sparse data where the
number of ‘‘interesting’’ mappings is relatively
small compared to the number of all consistent

mappings. Not only it is often impossible to con-
sider all mappings that are globally consistent, but
in doing so the denominator of Equation (11) can
become large when adding a large number of small
probabilities. Thus with sparse data, using selec-
tively standardized probabilities can be necessary
for obtaining reliable and numerically stable con-
clusions.

Inference
In the Bayesian context, statistical inference is a
procedure of making conclusions on the basis of
the globally consistent mappings satisfying Equa-
tion (10), and their posterior probabilities. Several
types of statistical inference can be made. First, we
quantify the information content in the data by
considering the posterior probability distribution
PrðM1; . . . ;MJjdÞ of mappings in Equation (10).
If only one mapping is selected, or if the posterior
probability of the best mapping fM!

1; . . . ;M
!
Jg is

markedly higher than the posterior probabilities of
the other selected mappings, we say that the data
set has a high information content. It has a low
information content otherwise. (Vitek et al., 2004)
provide examples of posterior distributions of
candidate mappings with different information
content.

The second type of statistical inference quan-
tifies the confidence in assignments of individual
positions in the sequence. We say that a mapping
between a position and a pseudoresidue is reliable
if it appears in all the selected solutions, and is not
surrounded by placeholders for entirely missing
pseudoresidues.

Finally, one can characterize the uncertainty in
an individual chemical shift by means of its pos-
terior mean and standard deviation. While these
parameters are currently averaged out in deriva-
tions of the scoring function, their posterior
probability distribution is easy to obtain. This
information would be used to identify positions
that negatively affect the quality of the assignment,
and to plan further experiments in an adaptive

% log PrðM1; . . . ;MJjdÞ ¼
XJ

j¼1

XT

t¼1

logð
ffiffiffi
2

p
pStÞ þ ðdwti0 % dstiÞ

2=2S2
t þ

XJ

j¼1

XT

t¼1

logð
ffiffiffiffiffiffi
2p

p
vtjÞ

þ ððdwti0 þ dstiÞ=2% dptjÞ
2=2v2tj þ I0 *N=ðN% JTÞ ð9Þ
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fashion. We plan to investigate the use of this
information in our future work.

Stochastic search algorithm

The stochastic search algorithm inputs a primary
sequence and experimentally determined pseu-
doresidues, and outputs a set of full mappings
having high posterior probabilities. The algorithm
relies upon three key ingredients: (1) a tree-based
structure that efficiently partitions the search space
into smaller subspaces, (2) a set of bounds elimi-
nating poor quality mappings even when they are
only partially specified, and (3) techniques of sto-
chastic search that focus computational resources
on promising portions of the space.

Tree-based structure of the search space
The tree recursively partitions the space of all
possible globally consistent mappings. Each node
in the tree represents a search subspace con-
strained by matches and alignments for some
positions in the primary sequence and some
pseudoresidues. Construction of the tree is
enhanced by enumeration of partial mappings,
which map chains of pseudoresidues to consecu-
tive positions in the primary sequence.

Construction of the tree is illustrated in
Figure 4. The root node is a set of all plausible
partial mappings covering the entire protein
sequence, as illustrated in the top of the figure. The
root node is created by first considering all com-
binations of pseudoresidues mapped to the first
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Figure 4. Tree-based representation of the search space. Circles with characters are pseudoresidues, with ‘‘?’’ denoting a missing
pseudoresidue. Numbers are positions in the protein sequence.
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two positions in the sequence. The scores of the
partial mappings are computed, and only the map-
pings satisfying the bounds derived from the prob-
ability model (described below) are kept. The
enumeration is then extended to the following resi-
dues, and an increasingly large number of plausible
partial mappings is examined. When the number of
mappings exceeds a pre-specified parameter, enu-
meration at the current position stops, and a new
independent enumeration begins at the following
two positions. For example, in the case shown in the
top of Figure 4, enumeration of partial mappings
was stopped after the first three positions, restarted
at the fourth position, stopped at the fifth and
restarted again at the sixth position. The enumera-
tion accounts for missing data by considering a
placeholder for an entirelymissing pseudoresidue as
a potential mapping at each position.

The children of a node are obtained by
branching on the choice of a position in the primary
sequence to fix, and of a pseudoresidue to map to
that position. The consequences of a choice are
propagated to descendant nodes: all partial map-
pings that are inconsistent with the choice are re-
moved, and the remaining partial mappings are
combined into longer ones as illustrated in Fig-
ure 4. Note that the positions fixed at a parent node
and one of its children need not be adjacent in the
primary sequence. A leaf node in the tree represents
a set of globally consistent mappings covering the
entire sequence (bottom left of Figure 4). A dead
end in the tree is a search subspace that cannot
contain a full globally consistent mapping satisfy-
ing the bounds (bottom right of Figure 4).

The tree is a compact and efficient representa-
tion of the search space, and its size is determined
by the information content in the data. In infor-
mative data sets the bounds are powerful, dead
ends occur early in the tree, and the total number
of nodes is small. In sparse data sets, the bounds
become effective only after fixing a number of
positions, and the tree is large.

Bounds on the search space of candidate mappings
Partial mappings in the tree must satisfy validity
bounds on the elements of the score in Equation
(9). Bounds specifying plausible matches and
alignments of pseudoresidues are used by most
assignment algorithms. In our case, these bounds
are as follows.

(a) Match: jdwti0 þ dstij + nt where nt are match
tolerances of resonance type t. We take fairly
largematch tolerances to accommodate sparse
data. The specific values are 0.25 ppm for C¢,
0.5 ppm for Ca and Cb, and 0.05 ppm for Ha.

(b) Align: jðdwti0 þ dstiÞ=2% dptjj = vtj + 3:89. The
value 3.89 is such that the probability of
rejecting a valid alignment is approximately
0.00001.

Key to the effectiveness of our search algorithm
is that we also apply bounds on partial mappings.
A partial mapping is evaluated according to its
total score obtained as in Equation (9), but with-
out the last term since the penalty is only defined
for full mappings. Intuitively, we can eliminate a
partial mapping if any extension of it is guaranteed
to be much worse than the best complete mapping
M! that we have found. Therefore, a partial
mapping covering a set of positions J must satisfy
the following:
(c) Score of a partial mapping: % log PrðMj2J jdÞ

%min log PrðMj62J jdÞ + % log PrðM!jdÞþ
log 100. In other words, we discard partial
mappings which, in combination with a
guaranteed lower bound on the best score at
the remaining positions, yield an assignment
that has a posterior probability at least 100
times smaller than the best mapping found.

(d) Number of unassigned pseudoresidues:
MissðMj2J Þ þmin MissðMj 62J Þ + MissðM!Þ
þ1. The prior distribution of candidate
mappings penalizes unassigned chemical shifts.
Therefore, we discard mappings which, in
combination with a guaranteed lower bound
on the minimum number of missing pseu-
doresidues at the remaining positions, exceed
the number of missings inM! by more than 1.

Searching the space
Trees are often linked to systematic search algo-
rithms, such as branch-and-bound, which prov-
ably find globally optimal solutions. Although
attractive, a naı̈ve tree-based representation and
search algorithm are not adequate for sparse
NMR data (Andrec and Levy, 2002). Better per-
formance can be obtained by approximation
algorithms which impose heuristic bounds on the
branches of the tree, but only guarantee that
solutions will be within some maximum distance
from the optimum (Wan et al., 2004). A faster
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execution time can be obtained by best-first and
depth-first search algorithms, but such algorithms
risk missing globally best solutions (Zimmerman
et al., 1997; Wang et al., 2005). In our previous
work we demonstrated that an enumeration-en-
hanced branch-and-bound algorithm can effi-
ciently search surprisingly large spaces of NMR
assignments (Vitek et al., 2005). Such systematic
searches have not, however, been able to handle
sparse data sets and large search spaces. An
effective strategy for sparse data is to stochastically
explore the tree by making randomized choices
such that most resources are devoted to ‘‘promis-
ing’’ portions of the space, but some time is also
spent exploring other subspaces that might be
hiding good solutions. Here we design a hybrid
algorithm that combines systematic exploration
with desirable properties of local search methods
such as simulated annealing (Buchler et al., 1997;
Lukin et al., 1997), genetic algorithms (Bartels
et al., 1997) and Monte Carlo optimization (Hit-
chens et al., 2003) that have been successfully
applied to backbone resonance assignment. We
also incorporate properties of other well-known
methods, namely Tabu search and ant colony
optimization (Hoos and Stützle, 2005) which have
not yet been applied to the problem.

The search algorithm is illustrated in Figure 5.
Its steps can be characterized as performing both
intensification (i.e., searching for full mappings
with better scores) and diversification (i.e., escap-
ing locally optimal portions of the search space).
The inner loop, A, of the algorithm iteratively
makes descents into the tree, in each descent
seeking to identify more plausible assignments. In
a manner similar to local search methods such as
simulated annealing, the algorithm preserves some
mappings (according to a pre-specified probabil-
ity) between iterations (Step 5 back to Step 2). The
remaining portion of the space is explored by
enumerating partial mappings that are consistent
with the decisions at Step 2, and then systemati-
cally descending into the tree (Steps 3 and 4). The
descent follows branches in an order that heuris-
tically attempts to keep the search focused: at each
step, it fixes the position to which the smallest
number of alternative pseudoresidues can be
mapped. To avoid being trapped in lower portions
of large trees, the algorithm only visits a pre-speci-
fied number of nodes and then returns to Step 2.
The systematic traversal of an ordered tree within

a descent is a special case of Tabu search which
prevents multiple examination of recently visited
nodes.

Throughout the intensification steps, the algo-
rithm dynamically learns promising directions of
search. For example, only positions that are
unambiguous according to the currently best
mappings can be preserved at Step 2. The order in
which the algorithm maps the possible pseudores-
idues to the selected position is also determined
from the best mappings found. Pseudoresidues
mapped to the position in the currently best map-
pings will be examined first, other non-missing
pseudoresidues next, and placeholders for entirely
missing pseudoresidues will be tried last. Every
time a better full mapping is found, the algorithm
accordingly strengthens the bounds (a)–(d) derived
from the probability model. As a result, more
partial mappings will be eliminated during the
enumeration step, and new positions will be chosen
to fix at Step 2 and to branch at Step 3.

The algorithm employs multiple diversification
strategies to escape locally optimal portions of the
space. First, randomization is used when no full
mappings are found, or in the case of a tie (e.g.,
when choosing which position to fix in the case
where multiple positions have the same minimal
number of alternative pseudoresidues). Second,
with a small probability, an entirely random order
is selected for visiting the branches from a node.
Third, when no improvement has been made for a
number of descents into the tree, the algorithm is
allowed to ‘‘forget’’ the currently best solutions,
discard the learning mechanisms, and at Steps 2
through 5 consider full mappings that are worse
than the best mappings found so far. Such wors-
ening steps are helpful to escape plateaus and
basins of the search space in the neighborhood of
the currently best solutions. The final diversifica-
tion strategy is based on the observation that a
single execution chain is more likely to be trapped
in a local optimum than several independent ones.
This is the basis of population-based optimization
methods such as evolutionary algorithms and ant
colony optimization. Our algorithm launches
multiple independent search chains (Step 1) and,
after a pre-specified number of descents, exchanges
information regarding the best mappings found
by the chains (Step 6). The chains are then
re-launched using as their starting points the best
of all mappings (the outer loop, B, in the figure).
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The algorithm stops when no improvements
have been made over a user-specified number of
descents. As is the case with all stochastic search
algorithms, it always outputs some solution, which
may be either globally or locally optimal.
Although finding the global optimum is the goal,
in some cases it may be more important to find
reasonably good mappings than to find no solu-
tion at all. This is arguably the case in sparse data
situations where even the global optimum is ex-
pected to contain errors due to low information
content. To validate the results obtained by the

algorithm we suggest repeating the execution and
comparing the solutions.

Implementation

Our method is implemented as version 3 of the
software package Model-Based Assignment
(MBA). MBA takes the same input format as
MARS, but since we do not use structural infor-
mation, those lines of the MARS parameter file
are ignored. MBA supports three amino acid
typing methods: prediction of chemical shifts using
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Figure 5. Schematic illustration of the stochastic search algorithm for inferential backbone resonance assignment.
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(Wan and Jardetzky, 2002) as described above, the
method developed by (Marin et al., 2004), and a
method using raw statistics from the BMRB to
generate predictive distributions of chemical shifts.
The current implementation does not allow fixing
pseudoresidue connectivities or restricting amino
acid types, but these extensions can be easily
implemented in the future.

The output of the algorithm is contained in one
file. The file states the execution parameters and
summarizes the data set and the reference solution
if it is provided. The output is followed by a
description of the assignment result: the posterior
distribution of globally consistent mappings, and
the posterior distributions of the pseudoresidues
mapped to each position in the sequence. Finally,
if a reference solution is provided, the file provides
a short comparison between it and the assignment
by MBA.

The program in its current form requires a
significant amount of computational resources.
However, the algorithm is highly parallel in that
independent search chains can be run on separate
processors. Synchronization of the chains is
implemented through a simple shared file; each
chain deposits and reads search results in this file
at Step 6 in Figure 5. Besides being simple, the
advantage of this implementation is that a shared
filesystem is the only requirement for synchroni-
zation of multiple processors running the search.
The shared file can also be used to monitor the
progress of the search and diagnose convergence.
In addition, a search can be stopped and subse-
quently restarted from the same state. Search
chains in this case will be initialized by reading the
last mappings deposited in the shared file. All the
data sets described in the following section were
assigned using a cluster of 18–30 nodes. Each
execution time was under 24 h and compared
favorably to the execution time required by
MARS for large proteins.

The program is implemented in the Java pro-
gramming language, is open source and is freely
available under the JPL license at http://
www.stat.purdue.edu/'ovitek/mba/mba.html.

Results

We evaluate the performance of our algorithm for
six experimental and 24 simulated data sets. The

simulated data are used to illustrate two types of
sparsity: sparsity due to many missing peaks and
few unambiguous matches of pseudoresidues
(which results in large search spaces of candidate
mappings), and sparsity due to experimental noise.
Software tools MARS (Jung and Zweckstetter
2004) and CASA (Wang et al., 2005) serve as
representative automated assignment programs for
assessing the difficulty of assignment and quality
of our method. Assignments with MARS were
obtained using version 1.1.3 of the software1 . We
report both assignments of high confidence
(marked ‘‘H’’), and of moderate-to-high confi-
dence (marked ‘‘M+H’’) in the MARS output.
The results of assignments with CASA are as
reported in (Wang et al., 2005).

Experimental data

Table 1 describes the experimental data sets used
to test our approach. The data for Syk protein-
tyrosine kinase SH2 domains, PLCC SH2 domains
and West nile capsid (unpublished data), as well as
the data for Dengue fever virus capsid (Ma et al.,
2004), were provided by Dr. Post, Purdue Uni-
versity. The data for Human ubiquitin are publicly
available from the University College London/
Ludwig Institute for Cancer Research Joint NMR
Laboratory (Ubiq. NMR Resource). The data for
Z domain were provided as a test to the AutoAs-
sign program (Zimmerman et al., 1997). Pseu-
doresidues for input to our program were
manually compiled for all proteins except Z do-
main. For Z domain, pseudoresidues were ex-
tracted from the output of the AutoAssign
program.

Table 1 illustrates the sparsity characteristics of
the proteins. The lengths of the proteins cover a
range between 71 and 257 residues. Pseudoresidues
for the first four proteins were compiled from a
minimal number of triple-resonance experiments,
and only Ca and Cb resonance types are available.
More resonance types are available for Human
ubiquitin and Z domain, and we study the per-
formance of our approach by sequentially reduc-
ing the number of resonance types. Overall, the
data sets have between 2 and 40 entirely missing
pseudoresidues, and between 2% and 20% of
chemical shifts of C¢, Ca, Cb and Ha resonance

1 http://www.mpibpc.gwdg.de/abteilungen/030/zweckstetter
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types are missing in the observed pseudoresidues.
We analyze the data with match tolerances typi-
cally used in the Post lab, namely 0.25 ppm for C¢,
0.5 ppm for Ca and Cb, and 0.05 ppm for Ha.
These tolerances are likely also appropriate for
Human ubiquitin and Z domain when using a
small subset of available resonance types. Under
these conditions, only 0–25% of the valid matched
and aligned pairs of pseudoresidues are unambig-
uous.

Table 1 summarizes assignment results for
these experimental data. The ‘‘true’’ assignments
for these proteins are unknown. Therefore we
estimate accuracy by comparing the results to a
reference solution which is determined by highly
reliable assignments in MARS when using all
resonance types. One can see from the table that
there is a small number of disagreements between
the two methods. However, whenever there are no
unique pairs or only a small fraction of unique
pairs, MBA consistently assigns more positions
than MARS. Our approach is particularly efficient
at assigning small proteins with a minimal number
of resonance types, such as Human ubiquitin with
only Ca chemical shifts. In this case MBA reliably

and correctly assigned 53 residues whereas MARS
only provided 3 or 4 reliable assignments. MBA
also typically assigns more positions than the
version of MARS considering only highly reliable
assignments. The numbers vary when we consider
both moderate and high quality assignments in
MARS. We return to the discussion of appropriate
comparison between the two methods at the end of
this section.

Synthetic data with large search spaces

To test our approach on data for which the correct
assignment is known, we analyzed results for 9
synthetic data sets used in the publication
describing MARS (Jung and Zweckstetter, 2004).
The data sets were compiled and kindly provided
to us by the authors of the paper. Pseudoresidues
were created from entries to the BMRB database
(Seavey et al., 1991) by taking the chemical shifts
for each position together with those for the pre-
ceding position. All chemical shifts missing in the
BMRB entries were left missing. The sparsity
characteristics of the data sets are shown in
Table 2. The proteins cover a wide range of

Table 2. Description of simulated data sets from (Jung and Zweckstetter, 2004)

Protein # Residues Resonance

typesa
# Miss

pseudor.

% Miss

cs

Unique pairsb

Total W.data Moderate

match tol.c (%)

Large match

tol.c (%)

Malate synthase G 723 654 C0CaCb 37 2.7 71 51.4

Maltose bind. protein 370 335 C0
%1C

aCb 13 3.7 0 0

CaCb 4.8 0 0

N-term. dom. enzyme I 259 248 C0
%1C

aCb 6 8.3 0 0

CaCb 3.9 0 0

E-cadherin dom. II & III 227 167 CaCb 45 13 0 0

Human prion protein 210 190 CaCb 4 11.3 0.5 0

Superoxide dismutase 192 117 C0CaCb 66 9.2 67.5 60.7

CaCb 4.9 46.2 36.8

Calmodulin /M13 148 144 C0Ca 1 0 73.6 29.2

E. coli EmrE 110 74 C0CaCb 0 30.3 0 0

CaCb 32.6 0 0

Human ubiquitin 76 72 C0
%1C

aCb 0 3 80.56 66.7

CaCb 3.8 80.56 66.7

Ca 0 11.1 1.4

aResonance types used in addition to H and N. Subscript )1 indicates that only sequential chemical shifts of the resonance type were
used.
bProportion of unambiguous pairs of pseudoresidues among all pairs with valid matches and alignment.
cModerate match tolerances: 0.15 ppm for C¢, 0.2 ppm for Ca and 0.4 ppm for Cb. Large match tolerances: 0.25 ppm for C¢, 0.5 ppm
for both Ca and Cb.
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76–723 residues. Overall the data sets contain 0–66
entirely missing pseudoresidues, 0–32% missing
chemical shifts for the C¢, Ca and Cb resonance
types, and at most three resonance types. To test
the performance of our method under different
assignment conditions, we use two sets of match
tolerances: moderate (0.15 ppm for C¢, 0.2 ppm
for Ca and 0.4 ppm for Cb), and large (0.25 ppm
for C¢ and 0.5 ppm for both Ca and Cb). One can
see from Table 2 that, although smaller match
tolerances increase the number of unambiguous
valid pairs of pseudoresidues, many data sets have
no or few such pairs. Therefore, sparsity charac-
teristics of the data will result in relatively large
search spaces of candidate assignments.

Assignment results for the synthetic data sets
are summarized in Table 3. On the subset of the
proteins reported in Wang et al. (2005), MBA is
typically more accurate than CASA: the median
number of errors in these data sets is 0 for MBA
and 9 for CASA for moderate match tolerances
(respectively 2.5 and 32.5 for large tolerances). In
comparison with MARS when using large match
tolerances, MBA typically assigns more positions
and has a comparably small number of errors. The
difference between two methods is small when
moderate match tolerances are used. We defer the
discussion of the choice of match tolerances to the
end of this section.

Table 3 provides interesting insights into the
effects of sparsity. MARS performs comparably to
or better than MBA in the cases of Human
ubiquitin with Cb resonance type, Superoxide
dismutase and Malate synthase G. These are the
data sets with the largest number of unambiguous
pairs of pseudoresidues (Table 2). Calmodulin,
however, demonstrates the effect of sparsity (via
match tolerance): increasing the match tolerance
decreases the number of unambiguous pairs from
73% to 29% (Table 2) and results in a 103- or 109-
residue shortfall of MARS relative to MBA
(Table 3). A similar effect is observed with in-
creased sparsity in Human ubiquitin due to fewer
resonance types. In general, MBA and MARS
perform comparably for proteins with a sufficient
fraction of unambiguous pairs of pseudoresidues.
On the other hand, MBA performs better on
proteins with a small fraction of unambiguous
pairs (particularly when there are none) and when
using large match tolerances.

These synthetic data sets are useful as they
allow us to evaluate the performance of algorithms
for large proteins with many missing chemical
shifts, the characteristics that result in large search
spaces of candidate assignments. However, in
several ways the data sets are not representative of
typical noisy experimental data sets. First, the
chemical shifts in the pseudoresidues have no
experimental error. This results in all match dif-
ferences of 0 ppm, not a realistic feature of
experimental data. Second, the synthetic data sets
overestimate the number of missing chemical
shifts. Missings in a BMRB entry indicate that the
chemical shifts could not be reliably assigned, but
not necessarily that the spectra did not contain the
corresponding peaks. Third, all chemical shifts
from a BMRB entry are considered as both
sequential and within-residue chemical shifts, but
in a real-life scenario, a chemical shift may be
represented by only one of the two types. Finally,
the data sets contain no extra pseudoresidues.
Since extra and noise peaks are common and
contribute greatly to the uncertainty in assign-
ment, it is desirable to include extra pseudoresi-
dues in a synthetic data set. The impact of these
restrictive simulation assumptions can be seen in
for the case of Human ubiquitin. The experimental
data set for Human ubiquitin with C¢)1, Ca and Cb

resonance types has 20% of valid pseudoresidue
pairs as unambiguous under large match toler-
ances, but the simulated data set with the same
resonance types has 67% unambiguous pairs. This
in turn results in an overly optimistic assessment of
the performance of the algorithms. Note the
difference in assigned positions between real and
simulated data for Human ubiquitin in Tables 1
and 3. Similar differences between experimental
and simulated data were observed for Calmodulin
in (Wang et al., 2005).

Synthetic data with sparsity and noise estimated
from real data sets

There is currently no consensus on how to
appropriately generate synthetic NMR data. Here
we attempt to design a simulation that is repre-
sentative of a typical experiment. In the following
we study statistical properties of noise of previ-
ously assigned experimental data sets, and create
noisy versions of entries to a database. The
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simulated data are sparse in that they only contain
Ca and Cb resonance types.

To determine realistic properties of noise we
consider experimental data sets for six proteins,
Fgf, Rnase, RnaseC6572S, Ns1, CspA and Z
domain, provided as a test to the AutoAssign
program (Zimmerman et al., 1997). Although the
correct assignments for these proteins are un-
known, the quality of the reference solutions
provided by AutoAssign is sufficient for statistical
considerations. On average the number of missing
pseudoresidues is 2.1% of assignable positions,
and the number of extra pseudoresidues is 3.7%
of assignable positions for Ns1, CspA and Zdo-
main (the proteins with no minor conformations).
The fractions of missing chemical shifts in the
observed pseudoresidues are reported in Table 4.
Note that Cb contains more missing chemical
shifts than Ca, sequential chemical shifts have
more missings than within-residue chemical shifts,
and extra pseudoresidues have more missing
chemical shifts than correct pseudoresidues. The
distributions of the differences of matched
chemical shifts are shown in Figure 2. One can
see that AutoAssign allows fairly loose matches
and on average 3.5% of ‘‘true’’ match differences
fall outside of match tolerances of 0.5 ppm for Ca

and Cb.
As a basis for simulations, we randomly

selected 16 entries from RefDB (Zhang et al.,
2003), ranging in length from 52 to 216 residues.
Since it is unlikely that all the missing chemical
shifts in the database correspond to truly missing
peaks, we replaced missing data with values sim-
ulated from the expected distributions of the cor-
responding resonance and amino acid types. We
then compiled pseudoresidues from the set of
chemical shifts for each residue in conjunction
with those for the preceding residue. At this point
all the pseudoresidues had no missing chemical
shifts.

We introduced noise by randomly deleting
correct pseudoresidues and by adding extra pseu-
doresidues with probabilities equal to the observed
frequencies reported above. We introduced miss-
ing chemical shifts independently for each reso-
nance and amino acid type with probabilities in
Table 4. Finally, we added noise to the chemical
shifts by sampling from the histograms of match
tolerances in Figure 2. As shown in Table 5, the
procedure resulted in data sets with between 1 and
6 entirely missing pseudoresidues. Only 5 of the 18
data sets have more than 15% unambiguous pairs
of pseudoresidues under moderate match toler-
ances, and only one does under large match
tolerances.

Assignment results for these data sets are
detailed in Table 6. As with previously discussed
data sets, MBA performs best, relative to MARS,
under large match tolerances (and particularly
when only considering MARS’ highly reliable
assignments). The difference between the methods
is less pronounced when using a moderate match
tolerance. At the same time, one should note an
increased number of errors in both MBA and
MARS as compared to the previously discussed
data, primarily due to the extra pseudoresidues.
The increase is particularly apparent in the mod-
erate-to-high reliability assignments by MARS.

Summary of assignment results

Figure 6 provides a summary overview of the
assignment results for all the synthetic data pre-
sented in the paper. Panels (a) and (b) in the figure
summarize the true positive rates of the assign-
ments, i.e., the fraction of assignable positions that
are correctly assigned. Panels (c) and (d) summa-
rize the error rates, i.e., the fraction of incorrectly
assigned positions among all the assigned posi-
tions. The data sets are separated by simulation
type, match tolerances, and method of finding the

Table 4. Average fraction of missing and extra data from (Zimmerman et al., 1997) used to simulate data in Table 6

Missing

pseudo

residues

Extra

pseudo

residues

Missing chemical shifts in correct

pseudoresidues

Missing chemical shifts in extra

pseudoresidues

Ca
%1 Cb

%1 Ca Cb Ca
%1 Cb

%1 Ca Cb

0.021 0.037a 0.056 0.118 0.003 0.187 0.468 0.328 0.362 0.497

aCalculated from proteins having no minor conformations.
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assignments. The overview provides useful insight
into the following questions.

How important is the choice of simulation
procedure?
The data sets in panels (a) and (c) are generated
without adding simulated experimental noise,
while the data sets in panels (b) and (d) are
instances of noisy data. One can see from the fig-
ure that noisy data yield smaller assigned fractions
and larger error rate. This indicates that simula-
tion procedure can have a significant impact on
our conclusions. It is therefore important to gen-
erate synthetic data carefully, and accurately rep-
resent the specific experimental conditions under
investigation.

Are large match tolerances necessary?
Figure 6 shows that the choice of match toler-
ances depends on both the noise level in the data
and the assignment procedure. For data with no
experimental noise, match tolerances did not

dramatically affect error rates for either MARS
or MBA, and MARS benefited from smaller
match tolerances in terms of the number of as-
signed positions. The conclusions are different
for noisy data. Increased match tolerances led to
MARS making more M+H assignments at a
higher error rate, but fewer H assignments at a
lower error rate. Therefore, the choice of match
tolerances for MARS with noisy data trades off
between true and false positive assignments.
MBA, on the other hand, benefited from large
match tolerances by both increasing the number
of true positive assignments, and decreasing the
number of false positive assignments. We con-
clude that large match tolerances optimize the
performance of MBA, and recommend using
large match tolerances with our approach.

How can one compare two assignment methods?
When an assignment program provides multiple
metrics of reliable assignments, as ‘‘M+H’’ and
‘‘H’’ in the case of MARS, it is best to compare

Table 5. Description of data simulated from randomly chosen entries from RefDB. The noise model is reported in Table 4 and
Figure 2

BMRB id # Residues Resonance

typesa
# Miss

pseudores

Unique pairsb

Total W.data Moderate

match tol.c (%)

Large match

tol.c (%)

4101 216 205 CaCb 4 0 0

5299 197 174 CaCb 3 0 0

5756 184 174 CaCb 6 7.4 0

5362 175 168 CaCb 5 9.7 2.3

4081 165 157 CaCb 3 0 0

4053 149 138 CaCb 5 0.7 0

4641 144 136 CaCb 3 0 0

4046 134 127 CaCb 5 0 0

5579 134 129 CaCb 3 0 0

5866 129 115 CaCb 4 0 0

5507 128 116 CaCb 3 15.3 4.2

4162 101 92 CaCb 3 20.2 7.5

5573 90 83 CaCb 3 0 0

4898 86 80 CaCb 3 24.4 11.0

4895 66 61 CaCb 3 25.4 9.5

63 Ca 1 0 0

5594 52 43 CaCb 3 51.1 37.8

45 Ca 1 0 0

aResonance types used in addition toH andN. Subscript)1 indicates that only sequential chemical shifts of the resonance typewere used.
bProportion of unambiguous pairs of pseudoresidues among all pairs with valid matches and alignment.
cModerate match tolerances: 0.15 ppm for C¢, 0.2 ppm for Ca and 0.4 ppm for Cb. Large match tolerances: 0.25 ppm for C¢, 0.5 ppm for
both Ca and Cb.
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metrics that have similar error rates. Figure 6c
shows that MBA can be compared to moderate-to-
high confidence assignments on data sets with no
added noise. However, when assigning noisy data,
the error rates of MBA are comparable to the rates
of highly confident assignments, and are smaller
than the rates of moderate-to-high confidence
assignments by MARS (Figure 6d). Therefore,
with noisy data it is most appropriate to compare
the results of MBA with the assignments by
MARS marked by ‘‘H’’.

When is MBA particularly helpful?
Figure 6 shows that MBA is particularly helpful
when data are noisy and require large match tol-
erances. For these cases, MBA has the highest
median fraction of assigned positions and the
lowest median error rate.

Discussion

In this paper we presented an inferential approach
and a hybrid stochastic search algorithm for
backbone resonance assignment with sparse data.
We tested the approach on a total of 44 experi-
mental and synthetic data sets for proteins ranging
in length from 52 to 723 residue. The accuracy of
our approach is due to the scoring function based
on an empirical Bayesian probability model. When
data are sparse and support a large number of
globally consistent mappings, the statistical model
allows us to select a subset of the mappings for
reliable conclusions. At the same time, our algo-
rithm efficiently searches large spaces of candidate
mappings. The efficiency is due to the hybrid nat-
ure of the algorithm that combines desirable
properties of several successful methods of

Table 6. Assignment results for simulated data for randomly chosen entries from RefDB. The noise model is reported in Table 4 and
Figure 2

Protein Resonance

typesa
Moderate match tolerancesb Large match tolerancesb

Reliable/errorc # Residues

improvedd
Reliable/errorc # Residues

improvedd

MARS M+He MARS He MBA M+He He MARS M+He MARS He MBA M+He He

4101 CaCb 127/1 105/0 142/6 10 31 121/1 98/0 163/1 42 64

5299 CaCb 159/4 130/1 133/1 )23 3 163/2 124/0 139/0 )22 15

5756 CaCb 106/2 93/2 140/6 30 43 133/7 89/4 148/4 18 59

5362 CaCb 146/10 138/7 135/2 )3 2 141/7 114/1 143/2 7 28

4081 CaCb 132/1 109/1 102/2 )31 )8 125/9 83/1 109/1 )8 26

4053 CaCb 121/6 93/3 101/9 )23 2 130/8 100/3 134/12 0 25

4641 CaCb 53/1 37/0 86/3 31 46 68/0 56/0 91/0 23 35

4046 CaCb 121/16 107/4 99/4 )10 )8 123/5 116/4 117/5 )6 0

5579 CaCb 108/2 93/1 99/0 )7 7 111/4 76/2 108/0 1 34

5866 CaCb 55/2 51/2 78/2 23 27 65/2 54/1 90/3 24 34

5507 CaCb 108/1 96/1 88/0 )19 )7 107/2 91/0 101/0 )4 10

4162 CaCb 78/2 68/2 80/1 3 13 85/4 67/2 80/1 )2 14

5573 CaCb 34/1 28/0 42/1 8 13 58/6 29/0 49/4 )7 16

4898 CaCb 75/4 60/0 65/0 )6 5 68/1 52/0 72/0 5 20

4895 CaCb 52/3 50/2 40/0 )9 )8 49/3 34/1 53/0 7 20

Ca 6/2 2/1 16/0 12 15 3/1 1/1 19/3 14 16

5594 CaCb 43/2 43/2 42/1 0 0 43/2 43/2 40/0 )1 )1
Ca 7/0 7/0 18/1 10 10 9/0 7/0 17/0 8 10

aResonance types used in addition to H and N.
bModerate match tolerances: 0.15 ppm for C¢, 0.2 ppm for Ca and 0.4 ppm for Cb. Large match tolerances: 0.25 ppm for C¢, 0.5 ppm
for both Ca and Cb.
cNumber of reliably mapped pseudoresidues/number of reliably but incorrectly mapped pseudoresidues.
dNumber of reliably and correctly mapped pseudoresidues by MBA minus number of reliably and correctly mapped pseudoresidues by
MARS.
eM+H: ‘‘reliable’’ in MARS output defined as medium or highly reliable. H: ‘‘reliable’’ in MARS output defined as highly reliable.
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stochastic search. Statistical bounds on scores of
partial mappings also contribute to the efficiency
of the method.

One should note that assignment errors are not
necessarily due to the performance of the algo-
rithm, but may also result from the insufficient
information content in the data. For example,
when we tried to assign larger proteins with only
the Ca resonance type, the algorithm typically
found globally consistent mappings covering most
positions and having better scores than the refer-
ence solution. In other words, the algorithm could

provide tighter matches and better quality align-
ments of Ca chemical shifts than in the reference
solution. The algorithm could not make use of any
other information to correct the errors. The situ-
ation where the assignment reflects the properties
of the specific data set rather the true resonances
that generated the data is known as overfitting.
This can be diagnosed by altering the data set
slightly without modifying its underlying structure.
For example, one can randomly exchange
sequential and within-residue chemical shifts that
were generated by the same nucleus according to

(a) assigned fraction of residues with data:
data sets from (Jung and Zweckstetter, 2004)
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(c) fraction of false assignments:
data sets from (Jung and Zweckstetter, 2004)
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Figure 6. Boxplots of the assignment results for all the synthetic data sets. (a)–(b): number of assigned residues divided by number of
assignable residues; (c)–(d): number of incorrect assignments divided by number of assigned residues. Each box covers 50% of the
values, horizontal line in the center indicating the median, and circles indicating outlying values. White boxplots denote assignments
with moderate match tolerances, filled boxplots denote assignments with large match tolerances.
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the assignment. Alternatively, one can add a small
amount of noise to the chemical shifts. Overfitting
will typically result in a different set of mappings
on the modified data set. However, the only way to
obtain the correct assignment in this case is to
collect more data.

Another error-prone situation arises when the
algorithm does not reach a globally optimal solu-
tion. Sub-optimal solutions can be detected by
launching independent executions multiple times.
If the searches find different solutions it may be
necessary to invest more computational resources
(e.g., more iterations, more independent search
chains, or more iterations with no improvement
before convergence) for a better exploration of the
space.

A limitation of the proposed approach is the
significant computational resources it requires.
However, the algorithm is highly parallel. The
data sets discussed in this paper were analyzed on
a cluster with between 18 and 30 nodes, and each
execution took less then 24 h of computing time.
Such clusters are becoming standard resources,
and a relatively small investment for the analytical
ability that they provide.

Although already efficient, the proposed ap-
proach will benefit from a number of improve-
ments. The statistical model can be extended in a
straightforward manner to incorporate additional
experimental information such as from COSY
spectra or selective amino acid labeling. It is also
possible to extend the probability model to incor-
porate structural information. Finally, the search
algorithm can be improved by combining its ele-
ments with resampling methods employed by
MARS.
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