
Lightweight Confinement for Featherweight Java

Tian Zhao Jens Palsberg† Jan Vitek†

University of Wisconsin, Milwaukee
† Purdue University

ABSTRACT
Confinement properties impose a structure on object graphs
which can be used to enforce encapsulation properties essen-
tial to certain program optimizations, modular reasoning,
and software assurance. This paper formalizes the notion
of confined type in the context of Featherweight Java. A
static type system that mirrors the informal rules of Grothoff
et al. [17] is proven sound. The definition of confined types
is extended to confined instantiation of generic classes. This
allows for confined collection types in Java and for classes
that can be confined post hoc. Confinement type rules are
given for Generic Featherweight Java, and proven sound.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Constructs and Fea-
tures

General Terms
Language, Theory, Verification

Keywords
Confined types, aliasing, ownership

1. INTRODUCTION
While object-oriented languages provide syntactic support
for encapsulating fields of object structures, this form of en-
capsulation is only skin deep. One need only take a step
back and look at the object graphs induced by the refer-
ence relationship between objects during program execution
to see that they owe more to a much maligned Italian na-
tional dish than to the result of careful engineering. The
problem lies in the lack of any structure on patterns of ref-
erences. While access modifiers provided by most languages
can prevent some part of the system from reading protected
variables, there is no syntax for constraining the spread of
the objects they denote.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’03, November 4-8, 2002, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/0010 ...$5.00.

The last five years have seen a renewed interest (starting
with [8]) in the study of ownership structures as well as re-
lated work on aliasing. The goal of these works is ambitious:
extend existing language with support for object encapsu-
lation. Some promising results suggest that it is possible to
capture many interesting encapsulation properties by type
systems. Clarke et al. were the first to propose a Java-like
language with ownership types [7]. More recently, Boyapati
et al. [3, 4] have extended these results and applied to the
Real-Time Specification for Java.

Our work takes a slightly different view. Rather than going
for the most expressive notion of confinement, we look for
the least disruptive one. The rationale is that before settling
on one particular notion of confinement and incorporating
that in a new language design, it is necessary to get first-
hand experience with the benefits and costs of developing
large software with these new constructs. Even more than
type systems, limitations on references patterns inherent to
any confinement discipline will impose constraints on pro-
grams. The risk is that they become too cumbersome for
programmers without providing sufficient benefit. In [17]
Bokowski and Vitek proposed a lightweight notion of en-
capsulation for Java called confined types. The idea is sim-
ple: use Java’s notion of software module (packages) as an
encapsulation boundary. A class is termed confined if ref-
erences to instances of the class may not leak out of the
class’ defining package. In other words, a confined object
can only be stored in fields of objects defined in the same
package and manipulated by code of classes belonging to its
package. What makes this approach lightweight is that very
few annotations are required (one annotation per confined
class, and some extra annotation for inherited method) and
that conformance to the confinement rules can be checked
modularly. In later work Grothoff, Palsberg and Vitek [11]
designed a tool for inferring confinement without any anno-
tations, the result of a thorough analysis of a large corpus
of code (101,893 classes) is that confined classes occur nat-
urally in large systems1. Confinement has been shown to
be applicable in practice as evidenced by the work of Clarke
et al. on Enterprise Java Beans [6].

Two drawbacks of our previous work, highlighted by the
corpus analysis, are that (a) classes can only be confined
within a single package and (b) standard collection classes

1
Software referred to in this paper is available from www.ovmj.org.

(such as vectors, lists) can not be used to hold confined
objects. Furthermore, the informal set of rule posited in [17]
was not formally shown to be correct. This paper makes the
following contributions:

• Give a static type system for the rules of [17] in the
context of a simple object calculus modeled on Feath-
erweight Java [14], and prove its soundness.

• Propose a notion of generic confined types which ad-
dresses the two above mentioned problems.

• Give a static type system for Generic Featherweight
Java with confined types, and prove its soundness.

The paper proceeds with a detailed description of confined
types. Then Section 3 introduces Confined FJ (CFJ) giv-
ing it an operational semantics and a static type system.
Section 4 presents our Generic Confined FJ (GCFJ). Sec-
tion 5 discusses related work. Finally we conclude with some
thoughts about future developments.

2. CONFINED TYPES
In object-oriented programming languages such as Java or
C#, confinement can be achieved by disciplined use of built-
in static access control mechanisms combined with some
simple coding idioms. Confinement, as defined in [11], en-
forces the following informal soundness property:

An object of confined type is encapsulated in its
defining scope.

To this end object types are categorized into public types
and confined types. The idea is that modules are composed
of two distinct software layers: an interface composed of
public classes and a core consisting of confined classes (see
Figure 1). What confinement adds to the visibility rules pro-
vided by the language is the guarantee that subtyping can
not be used to ’leak’ reference to core classes. Furthermore
confinement annotations make the programmer’s intent ex-
plicit and allow for automated checking. In the Java current
realization the unit of modularity is the package. We rely on
a programming idiom to identify confined classes: marker
interfaces are used to label classes and marker exceptions
are used to label methods. Thus we assume the following
definitions.

package marker;

interface ConfinedClass {}

final public class AnonymousMethod

extends Error {}

Consider the following example. A class Bucket is used to
implementation of a hash table class, mine.HTable. Hash ta-
ble buckets are an example of internal data structures which
should not escape the context of the enclosing class. In Java,
the first step towards that goal is to declare class Bucket

package scoped, thus ensuring that its visibility is restricted
to the package of the HTable class, in this case mine.

package mine;

public class HTable {

private Bucket[] buckets;

public Object get(Object key) { ...} }

class Bucket implements marker.ConfinedClass {

Bucket next;

Object key, val; }

But what if one of HTable’s public methods, say get(), were
to return a Bucket instance or store a reference to a bucket
in one of its public fields? One can view this as an escape
problem: can references to instances of a package-scoped
class escape their enclosing package? If the answer to this
question is no, then the objects of such a class are encap-
sulated. This form of encapsulation is what confined types
ensure. We emphasize that a stronger notion of confinement
could provide even tighter bounds on reference patterns, for
instance keep buckets of one hash table from being mixed
up with those of another [7], but that would place a consid-
erably greater burden on programmers.

The pleasant characteristics of confinement is that it can be
viewed as a programming discipline, i.e. it is possible to list
a small (and simple!) set of software design rules that will
result in a confined type. Moreover, these rules are local to
the confining package, which implies that confined types can
be used when appropriate and ignored when unnecessary.

Confinement can be enforced (or inferred) by two sets of
constraints. The first set of constraints, confinement rules,
apply to the enclosing package, the package in which the
confined class is defined. These rules track values of con-
fined types and ensure that they are neither exposed in
public members, nor widened to non-confined types. The
second set of constraints, so-called anonymity rules, applies
to methods inherited by the confined classes, potentially in-

mine

confined

boundary

outside

HTable

Bucket

Figure 1: A package consist of a confined core and a

boundary of public classes visible to the outside. Op-

erations on a confined class can only be initiated by a

classes belonging to the same package.

cluding library code, and ensures that these methods do not
leak a reference to the distinguished variable this which
may refer to an object of confined type. There are two
design choices for dealing with inherited methods either dis-
allow inheritance or restrict it to a safe subset. We have
chosen the later; anonymous method are well-behaved in
the sense that they can not ’leak’ their this pointer. En-
forcing confinement implies tracking the spread of confined
objects within a package and preventing them from cross-
ing package boundaries. A confinement breach occur if an
instance of a confined type escapes from its package. Since
confinement is couched in terms of object types, widening a
value from a confined type to a non-confined type presents a
risk as it is not possible to ascertain what will happen with
the object after the cast, thus casts are a considered to be
confinement violations. We present the rules of [11] with
some of implementation specific details omitted2.

Anonymity Rules. Anonymity rules apply to inherited
methods which may reside in classes outside of the enclos-
ing package. These rules prevent a method from leaking
the this reference. A method is anonymous if it has the
following property.

A1 The this reference is only used to select fields and as
receiver in invocation of other anonymous methods.

This prevents an inherited method from storing or returning
this as well as using it as an argument to a call. Selecting
a field is always safe, it can not break anonymity because
only the fields visible in the current class can be accessed.
Method invocation (on this) is restricted to other methods
that are anonymous as well.

Confinement Rules. The following confinement rules
must hold for all classes of a package containing confined
types.

C1 All inherited methods invoked on a confined type must
be anonymous.

C2 A confined type cannot be public.

C3
A confined type cannot appear in the type of a public
(or protected) field or the return type of a public (or
protected) method of a non-confined type.

C4 Subtypes of a confined type must be confined.

C5 Confined types can only be widened to other types
confined in the same package.

Rule C1 ensures that no inherited method invoked on a con-
fined type will leak the this pointer. Rule C2 states that
public classes can not be confined. Rule C3 prevents expo-
sure of confined types in the public interface of the package
as client code could break confinement by casting them to
non-confined types. Rule C4 prevents non-confined classes

2We do not discuss native methods, reflection, and open
packages as these are not germane to the formalization. The
reader is referred to [11] for a discussion of those features and
associated restrictions.

(or interfaces) from extending confined types. Finally, rule
C5 prevents values of confined type from being cast to non-
confined types. We note that rule C4 is not strictly needed
for enforcing confinement. Rule C5 is sufficient to ensure
against leaks even if subtyping is allowed. We retain C4
only because it will prove useful for generics.

Modular enforcement. Confinement annotations can
trivially be checked as part of the source level type checking
or by bytecode verification. One of the key design require-
ments for Confined Types was that code that did not use
them should not have to be checked and should not be re-
quired to use a modified compiler. Confined Types meet this
requirement as the rules outlined above place no constraints
on clients of a confined package (rule C3 is crucial in this
respect). Likewise confined type inference can be performed
on a per-package basis. Inference of anonymous methods is
somewhat trickier as it requires analyzing parent classes.

2.1 Empirical evaluation with Kacheck/J
The Kacheck/J static analysis tool [11] was implemented to
test our assumptions about confinement in real life setting.
Its goal was to help understand the properties of large, well-
engineered, systems. Kacheck infers confinement on unan-
notated Java programs by an efficient analysis of the byte-
code. Since client code is not required when checking con-
finement, it is possible to use Kacheck on libraries. We have
extended the Purdue Benchmark Suite (PBS) to 38 Java sys-
tems of varying size, purpose and origin. The entire suite
contains 101,893 classes (or 282 MB of bytecode), 8,920,978
methods and 4,564 packages. To the best of our knowledge
the PBS is the largest such collection of Java programs freely
available (it can be obtained from www.ovmj.org). The re-
sults gleaned from the analysis are encouraging as 6,630 con-
fined types occur in plain Java programs, Figure 2 gives the
breakdown per program or library. We surmise that these
numbers would be even higher if programmers actually de-
signed code with confinement in mind. Another important
statistic is that 48% of all methods (some 4,039,281) are
anonymous which suggests that significant chunks of behav-
ior can be safely inherited.

ag db bl de fo gf gj hj ja j1 j2 j3 j4 jy jb jt jp js kw o4 oz rh sc sa sh so sy to tc vy ws xe ze

0
20

40
60

80

Generic-Confined
Confined

%
 o

f p
ac

ka
ge

-s
co

pe
d

cl
as

se
s

Figure 2: The Purdue Benchmark Suite. For each

program, we give the ratio of confined classes and

an estimate of classes that would become confined

with generics.

Generics. In Java programs, vectors, hashtables and
other container type are omnipresent and every time an ob-
ject is stored in a container, its type is widened to Object

leading to a violation of the confinement rule preventing
widening. We posit that if Java supported proper para-
metric polymorphism, the large majority of these violations
would disappear – while truly heterogeneous data structures
do exist, they seem to be the exception. If we tune our anal-
ysis to ignore widening violations linked to containers, which
can be done by simply ignoring all widenings to Object that
occur in calls to methods of classes java.util, 2,000 addi-
tional classes become confined. Figure 2 gives the generic
confinement numbers for our new benchmark suite.

2.2 Confinement v. Reuse
From a practical perspective, one criticism of confined types
is that they seem to preclude code reuse. For a class to
be confined it must be local to a particular package and,
by definition, inaccessible to all other packages. This can
become unwieldy when dealing with programs that require
the same logic to be available in, and confined to, different
packages. While the issue was addressed in [17], a truly
satisfactory remained elusive.

Any solution to the reuse problem must allow to define
classes in a natural fashion, i.e. without imposing coding
conventions more restrictive than those presented above,
and must permit use of those classes as confined types in
certain contexts and non-confined in other. Previous work
failed to provide a satisfactory solution to this problem.

Summary. This section gave an overview of confined
types. While our benchmark results have provided support-
ing evidence to our claim that confined types are a natural
construction in object oriented systems, we are left with
the following questions. Is it possible to define a variant
of the confinement property that would deal with collection
classes? Can we solve the reuse problem alluded to above?
Moreover, until now our work has been entirely informal,
can we make any soundness claims?

3. CONFINED FEATHERWEIGHT JAVA
Featherweight Java, or FJ, is core object calculus that was
developed by Igarashi, Pierce and Wadler [14] for modeling
Java’s type system. The calculus is minimal in that it has
only five forms of expression: object creation, method invo-
cation, field access, casting and variable access. It is in this
spartan setting that Igarashi et al. studied a number aspects
of Java, notably generics and inner classes.

Featherweight Java is a good vehicle for semantic investiga-
tions due to its economy of principles. Thus to stay true to
its designer’s spirit, Confined Featherweight Java, or Con-
finedFJ, has been modified as little as possible. In partic-
ular, we have resisted the temptation to add assignment3.

3It may appear paradoxical that we are trying to address
aliasing in a calculus without references. But one insight
from our previous work is that confinement inference deals
exclusively with the propagation of types within a program.
All values of a type are treated as equal and the rules ensure
that values of a confined type are never confused with other

The syntax appears on Figure 3. The only departures from
FJ are the addition of package names in class declarations
and of an access modifier on classes. + means the class is
public and - means that the class is confined – in Java this
also correspond to the default access modifier. We follow the
Smalltalk-80 convention and assume that fields are package
scoped by default, though adding access modifiers to fields
would not be a major issue.

Consider the following ConfinedFJ program in which a pub-
lic class Table, defined in my package, contains a linked list
of Bucket objects. The Bucket class also belongs to my pack-
age but is declared confined. The program is invalid as the
body of the get() method of Table returns an instance of
the confined class Bucket, which is a direct violation of the
widening rule.

+ class my.Table extends Object {

Bucket buck;

Table(Bucket buck) {
super(); this.buck = buck; }

Object get() { return this.buck; } }

- class my.Bucket extends Object {

Bucket() { super(); } }

+ class my.Factory extends Object {

Factory() { super(); } }
Table table() {

return new Table(new Bucket()); } }

In the above, the Factory class is needed to allow code out-
side of the my package to create new tables with an initial
bucket (since class Bucket is package scoped this is the only
way to use the hash table from the outside). The breach can
be exhibited by constructing a class, aptly named Breach,
in the outside package.

+ class outside.Breach extends Object {

Object something;

Breach(Object something) {

super(); this.something = something; } }

Finally, in the context of these definitions, the expression

new Breach(new Factory().table().get());

evaluates in two reduction steps to the following expression

new Breach(new Bucket());

values. Dealing with references is, of course, important in
ownership systems with a finer grained unit of encapsula-
tion.

While the original expression is a valid object structure, the
result isn’t. In the original, Breach refers to Table which, in
turn, refers to Bucket enforces the desired isolation property.
Namely, the confined type is only referenced by another class
of the same package. In the resulting expression the confined
bucket is directly held by the Breach object.

In another prototypical breach of confinement consider the
following situation in which the confined class Self extends
a Broken class which resides outside. Assume further that
the table inherits its parent’s code for the reveal method.

- class my.Self extends outside.Broken {

Self() { super(); } }

+ class my.Ifc extends Object {

Ifc() { super(); }

Object get() {
return new Self().reveal(); } }

Inspection of this code does not reveal any breach of con-
finement. But if we widen the scope of our analysis a little
and look at the Broken class, then we may see:

+ class outside.Broken extends Object {

Broken() { super(); }

Object reveal() { return this; } }

The invoking reveal on an instance of Self will return a
reference to the object itself (suitably widened to Object).

We now proceed to introduce the syntax and semantics of
ConfinedFJ, before presenting a type system which will de-
clare both of the above programs to be ill-typed.

3.1 Syntax
The syntax of ConfinedFJ is shown in Figure 3. We use
metavariables L to range over class declarations, C, D, E to
range over classes, K, M to range over constructors and meth-
ods, and f and x to range over fields and parameters to
methods. We use over-bar to represent a finite array, for
instance, f represents f1, f2, . . . , fn. We use P, Q to range
over package names and we use ρC to refer to the package
that the class C is defined in. We assume a class table CT
which stores the definitions of all classes and CT (C) is the
definition of class C.

We use e, d to range over expressions and u, v, w to range over
fully-evaluated objects of the form new C(v). An expression
e can be either a variable x, the this pseudo variable, a
field access e.f, a method invocation e.m(e), a cast (C)e, an
object new C(e).

The subtyping relation C <: D denotes that class C is a sub-
type of class D, irrespective of access mode and or package,
if class C transitively extends D. We take the simplifying
assumption that class names are unique.

The definitions and auxiliary functions used in our semantics
and typing rules are listed in Figures 3 and 4. The predicate
visible(C, D) holds if the type C is visible in the package of D.
That is, if C and D are not in the same package, then C must
be declared public for it to be visible from D. This definition
models the Java’s class access modifiers so that only public
classes can be referred to from other packages.

The partial order � on types is such that C � D holds iff C

is a subtype of D, and either C is public or D is confined. This
definition will be used in the typing rules to prevent reference
widening, where the reference to an object of confined type
should not be widened to public types. The anon predicate
holds for a method m in class C, if the pseudo variable this

is used solely for field selection and method invocation of
methods that are anonymous themselves.

The other definitions are utilities mostly straight out of the
FJ paper. fields returns the list of all fields of a class in-
cluding inherited ones. mdef returns the name of defining
class for a given method. mtype returns the type signature
of a method. mbody returns the body of the method in a
given class. The predicate override holds if a method is valid
redefinition of an inherited method.

3.2 Reduction
The dynamic semantics of our language is given by a reduc-
tion relation of the form e → e′. As usual, →∗ denotes the
reflexive and transitive closure of → . The congruence rules
are explicitly specified though not very surprising. There
are three reductions rules. (R-Field) evaluates a field ac-
cess expression. (R-Cast) evaluates a cast expression, and
(R-Invk) evaluates a method invocation expression.

ConfinedFJ has a by-value semantics which requires that
arguments be fully evaluated before performing method in-
vocations or field access. Notice that the left hand sides
of the reduction rules (R-Field), (R-Cast), and (R-Invk)
contain expressions of the form new C(v). While this is su-
perficially closer to a real language such as Java, the reason
for this choice is that it deals with values greatly simplifies
the proof of the confinement property.

3.3 Typing
Typing rules are given in Figure 5, and they check for refer-
ence widening of types. In the typing rules, the condition of
the form C � D requires that C be a subtype of D and if C is a
confined type, then D must be confined as well. The typing
rules for expressions are similar to those in FJ except that
reference widening is not allowed. The expression typing
rules emulate the effects of the confinement rules C1 and C5.
In particular, Rule T-New prevents instantiating an object
with fields of public types by arguments of confined types.
Rule T-Invk prevents passing arguments of confined types
to a method with parameters of public types. Moreover, if
the called method is defined in a class of public type while
the receiver expression of the call is of confined type, then
the method must be anonymous in order to prevent implicit
reference widening of the variable this. Rule T-Cast pre-
vents casting an expression of confined type to public type.

Syntax:

◦ ::= + | -

L ::= ◦ class P.C / D { C f; K M }

K ::= C(C f) { super(f); this.f = f; }

M ::= C m(C x) { return e; }

e ::= x | this | e.f | e.m(e) | (C) e | new C(e)

v ::= new C(v)

Subtyping:

C <: C

C <: D D <: E

C <: E

CT (C) = ◦ class P.C / D { . . . }

C <: D

Computation:

fields(C0) = (C f)

new C0(v).fi → vi
(R-Field)

C <: D

(D) new C(v) → new C(v)
(R-Cast)

mbody(m, C0) = (x, e)

new C0(u).m(v) → [v/x, new C0(u)/this]e
(R-Invk)

Congruence:

e → e′

new C(. . . e . . .) → new C(. . . e′ . . .)

e → e′

(C) e → (C) e′
e → e′

e.f → e′.f

e → e′

e.m(e) → e′.m(e)

e → e′

e0.m(. . . e . . .) → e0.m(. . . e′ . . .)

Other definitions:

CT (C) = - class P.C / D { . . . }

conf (C)

CT (C) = + class P.C / D { . . . }

public(C)

public(C) ∨ ρC = ρD

visible(C, D)

C <: D public(C) ∨ (conf (D) ∧ ρC = ρD)

C � D

Figure 3: Confined FJ

Field look-up:

fields(Object) = ()

fields(D) = (D g)

CT (C) = ◦ class P.C / D { C f; K M }

fields(C) = (D g, C f)

Method definition lookup:

CT (C) = ◦ class P.C / D { C f; K M }

B m(B x) { return e; } ∈ M

mdef (m, C) = C

CT (C) = ◦ class P.C / D { C f; K M }

method m is not defined in M

mdef (m, C) = mdef (m, D)

Method type lookup:

mdef (m, C) = D CT (D) = ◦ class P.D / E { C f; K M }
B m(B x) { return e; } ∈ M

mtype(m, C) = B → B

Method body look-up:

mdef (m, C) = D CT (D) = ◦ class P.D / E { C f; K M }

B m(B x) { return e; } ∈ M

mbody(m, C) = (x, e)

Valid method overriding:

mtype(m, C0) = D → D ⇒ (C = D ∧ C = D)

override(m, C0, C → C)

Anonymous method:

mdef (m, C) = D mbody(m, C) = (x, e) anon(e, D)

anon(m, C)

anon(e, C)

anon((D) e, C)

anon(e, C)

anon(new D(e), C) anon(x, C)

anon(this.f, C)

anon(e, C)

anon(e.f, C)

anon(m, C) anon(e, C)

anon(this.m(e), C)

anon(e, C) anon(e, C)

anon(e.m(e), C)

Figure 4: Auxiliary Definitions

The definition of anonymous method is given in Figure 4.
A method defined in class D is anonymous if the return ex-
pression e of the method is anonymous in D. That is, in e,
the variable this can only be used for accessing fields and
for invoking anonymous methods defined or inherited in D.

In the typing rule for methods, the return expression of a
method m defined in class C must be visible in C, that is, the
type of every subexpression in m must be visible in C. The
effects of the constraint are that

• a method that returns expression of confined type C

can not be invoked outside the package where C is de-
fined;

• a field of confined type C can not be accessed outside
the package where C is defined;

• a confined type C can not be used in cast or object
instantiation outside the package where C is defined.

The visibility constraint of method body is meant to sim-
plify our typing rules and it is not useful in practice since it
requires checking the whole program. The confinement rules
C2 and C3 achieve the same effect and they can be checked
locally within the defining packages of the confined types.

The confinement rule C4 requires that a confined class be
inherited only by the confined classes defined in the same
package. We find such a constraint unnecessary in proving
the main results of confinement properties. Even if a con-
fined class C is inherited by a confined class D in another
package, it is not possible for an object o of type D to be
widened to the type C since our typing rules require o to
be types confined in the package of D. It is possible for the
public subclasses of a confined class to inherit fields of con-
fined types or methods that return confined types, but those
fields and methods are not accessible to the subclasses by
Rule C3. Thus, confined objects can not be leaked outside
their defining package through inheritance.

We assume that all classes are maintained in a class table
CT and CT is well-typed if all classes in CT are well-typed.
For the rest of the paper, we assume that CT is well-typed.

The two examples in the beginning of the section are not
typable according to the typing rules. In the first example,
the method get of the class my.Table does not type-check
because Rule T-Method requires that if the type of the
return expression of a method is confined than the return
type of the method must be confined as well. The type of
the return expression of the get method is my.Bucket while
the return type of the method is Object. Since Bucket is
confined and Object is public, we have a violation of the
typing rule T-Method.

The second example does not type-check because the con-
fined class my.Self inherits a non-anonymous method reveal

from the class outside.Broken and the method reveal is
called on a my.Self object in the get method of the class
my.Ifc. The method reveal violates the typing rule T-

Invk because the rule requires that all methods invoked on

Expression typing:

Γ ` x : Γ(x) (T-Var)

Γ ` e : C0 fields(C0) = (C f)

Γ ` e.fi : Ci
(T-Field)

Γ ` e : C0 Γ ` e : C
mtype(m, C0) = D → C

C � D mdef (m, C0) = D0
C0 � D0 ∨ anon(m, D0)

Γ ` e.m(e) : C
(T-Invk)

fields(C) = (D f) Γ ` e : C C � D

Γ ` new C(e) : C
(T-New)

Γ ` e : D
public(D) ∨ (conf (C) ∧ ρC = ρD)

Γ ` (C) e : C
(T-Cast)

Method typing:

x : C, this : C0 ` e : D D � C

override(m, D0, C → C)
x : C, this : C0 ` visible(e, C0)

C m(C x) { return e; } OK IN C0 / D0
(T-Method)

Class typing:

fields(D) = (D g) M OK IN C / D

K = C(D g, C f) {super(g); this.f = f; }

◦ class P.C / D { C f; K M } OK
(T-Class)

Expression visibility:

Γ ` x : C visible(C, C0)

Γ ` visible(x, C0)
(V-Var)

Γ ` visible(e, C0)
Γ ` e.fi : C visible(C, C0)

Γ ` visible(e.fi, C0)
(V-Field)

Γ ` e.m(e) : C visible(C, C0)
Γ ` visible(e, C0) Γ ` visible(e, C0)

Γ ` visible(e.m(e), C0)
(V-Invk)

visible(C, C0) Γ ` visible(e, C0)

Γ ` visible(new C(e), C0)
(V-New)

visible(C, C0) Γ ` visible(e, C0)

Γ ` visible((C) e, C0)
(V-Cast)

Figure 5: Typing Rules

an object of confined type is either anonymous or defined
in the same package as the confined type. Notice that the
method reveal is not anonymous because the variable this

is returned while according to the rules for anonymous meth-
ods in Figure 4, the variable this can only be used for field
access or invocation of anonymous methods in the return
expression.

3.4 Properties
In this section, we describe the properties of confined ob-
jects. Suppose we have an object o of confined type C de-
fined in package P. The typing rules guarantee that only
methods defined in P or anonymous methods inherited by C

can access the fields and methods of o.

We prove the property in Theorem 7. We show that for
a well-typed method call expression new C0(u).m(v), where
m is defined in class D0, all accessible objects during the
evaluation of the method call are visible in the package of
D0 except that if m is anonymous, then new C0(u) is accessible
for field select and invocation of anonymous methods. We
also prove the usual subject reduction lemma and state the
progress lemma. For the subject reduction lemma, we show
that an expression of public type can not be reduced to an
expression of confined type. In Theorem 6, we prove that a
well-type expression will not get stuck and an expression of
public type will not be reduced to a value of confined type.

Lemma 1. Subject Reduction: If ∅ ` e : C and e → e′

then ∅ ` e′ : C′ for some C′ � C.

Lemma 2. Progress: If ∅ ` e : C and e contains subexpres-
sion e0 where

e0 = new C0(v).fi

| (C) new C
′(v), C

′ <: C,

| new C0(u).m(v),

then there exists e′ 6= e such that e → e′.

Lemma 3. If mtype(m, C0) = D → D, mdef (m, C0) = D0, and
mbody(m, C0) = (x, e), then there exists some C � D such
that x : D, this : D0 ` e : C.

The following two lemmas prove term substitution preserves
typing for expressions in anonymous methods and nonanony-
mous methods.

Lemma 4. If x : B, this : D0 ` e : B, ∅ ` v : A, A � B,
∅ ` new C0(u) : C0, C0 <: D0, and anon(e, D0), then ∅ `

[v/x,
new C0(u)/this]e : C for some C � D.

Lemma 5. If x : B ` e : D, ∅ ` v : A, A � B. then ∅ ` [v/x]e :
C for some C � D

In normal termination, an expression reduces to a fully-
evaluated object of the form new C(v). An irreducible ex-
pression of the form (C) new C′(v), where C′ is not a subclass

of C, represents a failed cast, An irreducible expression is
stuck if it contains subexpressions of the form new C0(v).fi
or new C0(u).m(v).

Theorem 6. If ∅ ` e : C and e →∗ e′, then e′ is not stuck,
and there exists C′ such that ∅ ` e′ : C′ where C′ � C.

Proof. Immediate from Lemma 1 and 2.

Intuitively, the confinement theorem states that all expres-
sions that are manipulated within the body of a method ei-
ther evaluate to methods that are visible from the method’s
defining package. The only exception is for anonymous meth-
ods, as they may have access to this which can evaluate to
an instance of a class confined in another package, if this
occur the method must be anonymous and the use of this
is restricted to the receiver position.

Theorem 7. Confinement. If e = new C0(u).m(v), ∅ ` e :
D, mdef (m, C0) = C and e → d, then for every subexpres-
sion d′ of d such that d′ →∗ new D0(u

′) we have:

1. visible(D0, C), or

2. d′ = new C0(u), m is anonymous and d′ appears in a subex-
pression of the form d′.f or d′.m′(v′).

Proof. Suppose method m is such that mtype(m, C0) =
D → D, mdef (m, C0) = C, and also mbody(m, C) = (x, e0).

Let Γ = x : D, this : C. By Rule T-Invk, if ∅ ` v : D
′
, then

D
′
� D; and either C0 � C or anon(m, C). By Lemma 3,

we have that Γ ` e0 : D. Let d′ be any subexpression
of d, there exists a subexpression e′ of e0 such that d′ =
[v/x,

new C0(u)/this]e
′. Since Γ ` e0 : D, there exists D′ such

that Γ ` e′ : D′.

By Rule T-Method, we have Γ ` visible(e0, C) and by sim-
ple induction, we can show that Γ ` visible(e′, C) which
implies visible(D′, C).

If C0 � C, then from D
′
� D and Lemma 5, there exists

D′′ such that ∅ ` d′ : D′′ and D′′ � D′, By Lemma 1, if
d′ →∗ new D0(u

′), then D0 � D′′. Together with D′′ � D′

and visible(D′, C), we have visible(D0, C).

If we have anon(m, C), then by definition, we have anon(e0, C)
as well. By the definition of anonymous expression, either
we have anon(e′, C) or e′ = this appears in a subexpression
of the form this.f or this.m′(v′). If anon(e′, C), then from

C0 <: C, D
′
� D, and Lemma 4, there exists D′′ such that

∅ ` d′ : D′′ and D′′ � D′. By Lemma 1, if d′ →∗ new D0(u
′),

then D0 � D′′. Similarly, we have visible(D0, C).

Therefore, if d′ →∗ new D0(u
′) then either visible(D0, C) or

d′ = new C0(u) appears in a subexpression of the form d′.f
or d′.m′(v′).

This result ensures that any well-typed program consisting
of a top-level method invocation expression will preserve
confinement.

4. GENERICS AND CONFINEMENT
The lack of support for collections and the reuse problem
were identified early on as significant issues limiting the ap-
plicability of confined types. In this section we show how
to extend the confinement property to generic types. In
particular, how to write a generic class C〈X〉 which can be
used to define generic collection classes that are, in and of
themselves, not confined. But that become confined if in-
stantiated with confined arguments.

Following the lead of Featherweight Generic Java, ConfinedFJ
is extended with support for generic types and renamed Con-
finedFGJ. The only departure from our role model is that
in ConfinedFGJ, type variables are annotated with confin-
ability tags. So for some generic type C〈X〉, the type variable
X can be either public Xp or confined Xc. The semantics of
these annotations is that a public type variable can only be
instantiated with a public type, while a confined type vari-
able may be instantiated with a confined class (or a public
class). Besides the first five rules already presented, we re-
quire:

C6
A generic type or type variable can not be widened
to a type containing a different set of confined type
variables.

C7 A confined type can not replace a public type variable
in the instantiation of a generic type.

C8 Overriding must preserve anonymity of methods.

C5 and C6 combined corresponds to the subtyping partial
order that prevents reference widening for Generic Con-
finedFJ. C7 corresponds to the extra requirement in the def-
inition of well-formed generic types. Unlike in ConfinedFJ,
C8 is necessary since we are not certain which method may
be called before a generic class is instantiated.

Consider a generic linked list class. If we desire to allow
the class to be used to hold confined objects, it should be
defined with a confined type variable in place of its value
type. The following is likely definition.

+ class some.List<Xc extends Object>

extends Object {

X val;

List<X> next;

List(X val, List next) {
super(); this.val=val; this.next=next;

}
}

Where things get interesting is that we can now write code
that uses lists in several contexts. Thus it is possible to use
the list twice within the same package, once with a confined
type – thus turning the list itself into a confined type –
and once with a non confined type. The following example
illustrates this. Classes A and B reside in my package, the
latter is confined. Class A further defines two variables: show

holds a list of A objects and hide holds a list of B objects.
Since B is confined the type List will be confined as well.

+ class my.A extends Object {

List<A> show;

List hide;

...}

- class my.B extends Object {

B() { super(); }
}

Generics can be used to address the reuse problem with a
slight of hand. If a class needs to be reused across different
packages and confined in each of these packages one may
simply give the class a dummy type variable annotated as
confined. This type variable need not be used in the body of
the class, it will merely serve as a marker. Reuse is obtained
by instantiating the class in each of the packages with a
dummy confined class as argument. Consider the following
scenario, a class Key is meant to provide functionality that
can be used in different confined settings.

+ class a.Key<Xc extends Object> extends Object {
...

}

The type variable X need not used in the implementation of
Key. The class can be confined in any package as long as it
is instantiated with a confined type, e.g. new Key<my.B>().

Generic types that may be instantiated with a generic argu-
ment are referred to as confinable generic types. The seman-
tics of confinable generic types are surprisingly simple. Any
type variable that is tagged as confined will be treated as
a confined type by the type system and reference widening
will be forbidden for expressions of this type. Even though a
confinable generic type may not be confined in any package,
reference widening should not be allowed for expressions of
the type either.

For example, consider a generic container class.

+ class some.Container<Xc extends Object>

extends Object {

X val;

Container(X val) {this.val = val}
Object get() { return this.val; }
Object get2() { return this; }

}

The Container class has a method get that returns the
field val and a method get2 that returns the pointer this.
Both methods violate the confinement properties because
the types of the return expressions in get and get2 are
widened from X and Container〈X〉 to Object respectively.

Since X is tagged as confined type variables, it may be re-
placed by confined types when Container is instantiated as
in the class my.A.

+ class my.A extends Object {

Container f = new Container(new B());

Object reveal() {
return f.get(); }

Object reveal2() {
return f.get2(); }

}

The class my.A has a field f that points to a Container ob-
ject instantiated with a confined object of the type my.B.
The method reveal calls the get method on the Container

object. Apparently, the type of the expression new my.B() is
widened from my.B to the type Object by the method reveal

because of the call to the get method. The method reveal2

also violates confinement properties because it widens con-
fined object of the type Container<my.B> to Object. Thus,
our typing rules disallow methods such as get and get2 in
classes of confinable generic types to prevent widening of
references to confined objects.

Any confinable generic type may be confined in more than
one packages, For instance, if a class P.A〈X〉 contains a ref-
erence to an object of the type Q.B〈P.C, X〉, where P.C is a
confined type in P, then Q.B〈P.C, X〉 should be confined in
P. If the class P.A〈X〉 is instantiated with a confined type
P′.C′, then an object of the type P.A〈P′.C′〉 is confined in P′

and it also contains a reference to an object of the type
Q.B〈P.C, P′.C′〉, which is now confined in both P and P′.

In the previous section we argued that the rule limiting sub-
typing of confined types was redundant. This is not the case
when generics are added to ConfinedFJ. C4 is needed since
a generic class may contain fields of confined types. How-
ever, we can not force all fields of confined variable types
to be declared private or default as this would make such
fields inaccessible when the generic class is instantiated in
other packages with non-confined arguments types. This is
undesirable as it limits the ability to reuse generic classes.

4.1 Syntax
The syntax for generic class is shown in Figure 6. For sim-
plicity, we omit the parameterized types in methods. We use

◦ ::= + | -, N ::= C〈T〉, T ::= X | N, X ::= Xc | Xp

L ::= ◦ class P.C〈X / N〉 / N { T f; K M }

K ::= C(T f) { super(f); this.f = f; }

M ::= T m(T x) { return e; }

e ::= x | this | e.f | e.m(e) | (N) e | new N(e)

v ::= new N(v)

Figure 6: Syntax

X, Y for type variables and N, W for types; S, T range over both
types and type variables. The type variable X in a generic
class can be either public Xp or confined Xc. In a class defi-
nition of the form ◦ class P.C〈X / N〉 / N { . . . }, N are the
upper bounds for the type variables X

4.2 Typing
Figure 8 contains subtyping rules, definitions for well-formed
types, and other miscellaneous definitions. The subtyping
rules are the same as those in Generic FJ.

A type C〈T〉 is public iff C is public and T are public types or
public type variables. We use conf (N, P) to denote that the
type N is confined in the package P. A type C〈T〉 is confined
in P iff C is confined in P or there exists a type N ∈ T such that
conf (N, P) is true. Note that a confinable generic type may
not be be confined in any package. However, it can become
confined in some packages after instantiation. Thus, it is
necessary to prevent reference widening for expressions of
confinable generic types. A type N is confined iff there exists
P such that N is confined in P.

If the type C〈T〉 is well-formed, then for all i, either Ti is
public or the type variable it replaces must be confined.
This restriction prevents reference widening when generic
types are instantiated.

As in confined FJ, we define a partial order � on types
to represent subtying relation without reference widening.
To have ∆ ` S � T, we must have ∆ ` S <: T and if S is
confined in package P then so is T; also, S, T must contain the
same set of confined type variables. With the last restriction,
the partial order on S, T still holds even if type variables in
S, T are replaced by confined types. We use ConfVar(N) to
denote the set of confined type variables in N.

A type variable is visible in any class, while a non-variable
type N is visible in the class C iff conf (N, P) implies that C is
defined in P. A type N is visible in C〈N〉 iff conf (N, P) implies
either C is defined in P or conf (C〈N〉, P). Figure 9 contains
the helper functions used in the typing rules and they are
similar to those in Generic FJ.

Anonymous methods of a generic class C〈X〉 stay anonymous
even if the type parameters X in class C are replaced by some
types. In the rest of the paper, anon(m, C〈T〉) is equivalent
to anon(m, C). Figure 7 contains typing rules for expres-
sions, methods, and classes, and also visibility rules for ex-
pressions. The expression typing rules are similar to those
in Generic FJ with some additional constraints to prevent
explicit or implicit reference widening. The constraint cor-
responds to the confinement rule C4 is not needed in prov-
ing the confinement properties for generic types. However,
we do need the rule if we want modular checking. In the
method typing rule, we require that the return expression
of a method in class C be visible in C. The visibility rules
of expressions in a generic class are similar to those of non-
generic class. As in the case of CFJ, the visibility constraint
of method body is meant to simplify the typing rules and it
requires whole program analysis. To enable modular check-
ing, we can substitute visibility constraint of method body

Expression typing:

∆;Γ ` x : Γ(x) (GT-Var)

∆; Γ ` e0 : T0

fields(bound∆(T0)) = (T f)

∆; Γ ` e0.fi : Ti
(GT-Field)

∆; Γ ` e0 : T0 ∆;Γ ` e : V
mdef (m, bound∆(T0)) = N0
mtype(m, N0) = U → U ∆ ` V � U

∆ ` T0 � N0 ∨ anon(m, N0)

∆; Γ ` e0.m(e) : U
(GT-Invk)

∆ ` N fields(N) = (T f)
∆; Γ ` e : S ∆ ` S � T

∆;Γ ` new N(e) : N
(GT-New)

∆; Γ ` e : T ∆ ` N

conf (T, P) ⇒ conf (N, P)
ConfVar(T) = ConfVar(N)

∆; Γ ` (N) e : N
(GT-Cast)

Method typing:

∆ = X <: N Γ = x : T, this : C〈X〉
∆ ` T, T ∆;Γ ` e : S ∆ ` S � T

∆; Γ ` visible(e, C) override(m, N, T → T)
anon(m, N) ⇒ anon(m, C〈X〉)

T m(T x) { return e; } OK IN C〈X / N〉 / N
(GT-Method)

Class typing:

X <: N ` N, N, T M OK IN C〈X / N〉 / N
fields(N) = (U g)

K = C(U g, T f) {super(g); this.f = f; }

◦ class P.C〈X / N〉 / N { T f; K M } OK
(GT-Class)

Expression visibility:

∆;Γ ` x : T visible(T, C)

∆; Γ ` visible(x, C)
(GV-Var)

∆; Γ ` visible(e, C)
∆; Γ ` e.fi : T visible(T, C)

∆; Γ ` visible(e.fi, C)
(GV-Field)

∆; Γ ` e.m(e) : T visible(T, C)
∆; Γ ` visible(e, C) ∆; Γ ` visible(e, C)

∆; Γ ` visible(e.m(e), C)
(GV-Invk)

visible(N, C) ∆; Γ ` visible(e, C)

∆; Γ ` visible(new N(e), C)
(GV-New)

visible(N, C) ∆; Γ ` visible(e, C)

∆; Γ ` visible((N) e, C)
(GV-Cast)

Figure 7: Typing rules

Subtyping:

∆ ` T <: T ∆ ` X <: ∆(X)

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U

CT (C) = ◦ class P.C〈X / N〉 / N { . . . }

∆ ` C〈T〉 <: [T/X]N

Public, Confined Types and Type Variables:

conf (Xc) public(Xp)

(conf (C) ∧ ρC = P) ∨ ∃T ∈ T, conf (T, P)

conf (C〈T〉, P)

conf (C〈T〉, P) for some P

conf (C〈T〉)

public(C) ∧ ∀T ∈ T, public(T)

public(C〈T〉)

Well-formed Types:

∆ ` Object
X ∈ dom(∆)

∆ ` X

CT (C) = ◦ class P.C〈X / N〉 / N { . . . }

∆ ` T ∆ ` T <: [T/X]N ∀i, public(Ti) ∨ conf (Xi)

∆ ` C〈T〉

Set of Confined Type Variables in Types:

ConfVar(X) = {X | conf (X)}

ConfVar(C〈T〉) =
[

∀T∈T

ConfVar(T)

Subtyping without Reference Widening:

∆ ` S <: T conf (S, P) ⇒ conf (T, P)
ConfVar(S) = ConfVar(T)

∆ ` S � T

Visibility of Types and Type Variables

visible(X, C)
conf (N, P) ⇒ P = ρC

visible(N, C)

conf (N, P) ⇒ (P = ρC ∨ conf (C〈N〉, P))

visible(N, C〈N〉)

Bound of type:

bound∆(X) = ∆(X) bound∆(N) = N

Field look-up:

fields(Object) = ()

CT (C) = ◦ class P.C〈X / N〉 / N { S f; K M }
fields([T/X]N) = (U g)

fields(C〈T〉) = (U g, [T/X]S f)

Figure 8: Subtyping rules and Misc. Definitions

Method Type Lookup:

mdef (m, N) = D〈T〉
CT (D) = ◦ class P.D〈X / N〉 / N { S f; K M }
U m(U x) { return e; } ∈ M

mtype(m, N) = [T/X]U → [T/X]U

Method body look-up:

mdef (m, N) = D〈T〉
CT (D) = ◦ class P.D〈X / N〉 / N { S f; K M }
U m(U x) { return e; } ∈ M

mbody(m, N) = (x, [T/X]e)

Valid method overriding

mtype(m, N0) = U → U ∧ T = U, T = U

override(m, N0, T → T)

Figure 9: Auxiliary functions

with the confinement rules C2, C3, and C4. Unlike in CFJ,
Rule C4 is needed because Rules C2, C3 do not apply to fields
of variable types or methods with variable return types.

For example, consider a generic confinable class my.A<Xc>

and its instantiation my.A<C>. my.A<C> is confined because
the type argument my.C is confined. The class my.B extends
my.A<C> and the inherited field f in the class my.B is assigned
a confined object new C() by the method m in class my.D. The
method breach in the class outside.E is able to access the
field f of new B() and return the confined object new C().
Since the class outside.E is defined outside the package of
my.C, we have a violation of confinement property.

+ class my.A<Xc> {

X f;

A (X f) { this.f = f; }
}
- class my.C {}

+ class my.B extends A<C> {}

+ class my.D {

B m() { return new B(new C()); }
}
+ class outside.E {

Object breach(){return ((new D()).m()).f;}
}

The method breach is not typable because the Rule (T-

Method) requires the type of ((new D()).m()).f to be
visible in outside.E, which is not true.

Rules C2, C3 alone are not able to prevent this problem
because the type of the field f is variable type X. We may
not want to set the access modifier of f as private or default,
because the class my.A<Xc> would be less reusable because f

becomes inaccessible when my.A<Xc> is instantiated outside
the package my. However, according to Rule C4, the class
my.B should be confined because C4 requires the subclasses

of a confined class to be confined. If my.B were confined,
then outside.E could not call the method m of the class my.D
since m would not be accessible to outside.E according to
Rule C3.

Also in the typing rule for methods, we require that method-
overriding preserves anonymity for generic classes. This
is needed for preventing implicit reference widening in a
generic class after it is instantiated.

4.3 Properties
In this section, we prove some results similar to those for
Confined FJ (CFJ). In Generic CFJ, a program without
free type variables should have the same confinement prop-
erties as does a program in CFJ. Our typing rules for generic
classes guarantee that if the type of an expression e is con-
fined in a package P and e →∗ e′, then the type of e′ is
confined in P as well. This property is shown in the subject
reduction lemma and theorem 10.

Lemma 8. Subject Reduction: If ∅; ∅ ` e : N and e → e′

then ∃N′ such that ∅; ∅ ` e′ : N′, where ∅ ` N′ � N.

Proof. We prove by induction over the structure of e.
The proof is similar to that of Lemma 1 except for the case
when e is of the form new N0(u).m(v).

Lemma 9. Progress: If ∅; ∅ ` e : N and e contains subex-
pression e0 where

e0 = new N0(v).fi

| (N) new N
′(v), ∅ ` N

′ <: N,

| new N0(u).m(v),

then there exists e′ 6= e such that e → e′.

Theorem 10. If ∅; ∅ ` e : N and e →∗ e′, then e′ is not
stuck and ∃N′ such that ∅; ∅ ` e′ : N′, where ∅ ` N′ � N.

Proof. Immediate from Lemma 8 and 9.

Theorem 11 is similar to Theorem 7. The difference is that
if a method defined in the class C〈N〉 can access an object
confined in the package P, then either C is defined in P or
there exists N ∈ N such that N is confined in P. The latter
case may be true when a generic type C〈X〉 is instantiated
with confined type arguments.

Theorem 11. If e = new N0(u).m(v), ∅; ∅ ` e : N,
mdef (m, N0) = N′0, and e → d, then for every subexpression
d′ of d such that d′ →∗ new N′(u′) we have:

1. either visible(N′, N′0), or

2. d′ = new N0(u), m is anonymous, and d′ appears in a
subexpression of the form d′.f or d′.m′(v′).

Proof. Similar to the proof of Theorem 7.

5. RELATED WORK
Reference semantics permeate object-oriented programming
languages, and the issue of controlling aliasing has been the
focus of numerous papers in the recent years [13, 12, 9, 1,
16, 10, 15, 8]. In [16], flexible alias protection is presented
as a means to control potential aliasing amongst compo-
nents of an aggregate object. Clarke, Potter, and Noble
[8] have formalized representation containment by means of
ownership types. Boyland, Noble and Retert [5] introduced
capabilities as a uniform system to describe restrictions im-
posed on references. Recent work by Boyapati et al. [3, 4]
has applied ownership types to scoped memory in the Real-
time Specification for Java. The paper by Banerjee and
Naumann [2] demonstrated the use of object confinement
to achieve representation independence. Their stronger no-
tation of confinement is instance-based and it can be used
to prove equivalence of class implementations such that if
an implementation is confined, then it may be replaced by
semantically equivalent ones without affecting the behavior
of the whole program. Their work has significance in prov-
ing the equivalence of programs and the correctness of static
analysis such as secure information flow.

In related work Clarke et al. [6] have adapted the notion
of confined types to ensuring the integrity of components
in the Enterprise JavaBeans framework. One of the inter-
esting aspects of their work is that the unit of confinement
is different. Rather than confining types within a package,
they confine them within a Bean using the following rules
(CB1-6): CB1 declares which types are confined (C2 in our
case), CB2 prevents confined types from appearing at the
Bean boundary or in static variables (roughly equivalent to
C3), CB3 prevents widening of confined types (identical to
C2), CB4 prevents unconfined types to be cast to confined
types (redundant as it follows from CB3 and CB6 that no
cast from an unconfined type to a confined will ever suc-
ceed), CB5 prevents confined code from accessing uncon-
fined classes which have confined types in their signature,
and finally CB6 states that confined classes may only ex-
tend one another or Object (a stronger version of C4). Rule
CB6 precludes confined classes from inheriting code from
non-confined classes and thus sidesteps the issue of anony-
mous methods. But the main difference between the systems
lies in rules CB2 and CB5 which conspire to prevent the use
of static variables to communicate across beans.

6. CONCLUSION
This paper has formalized the notion of confined type in the
context of an minimal object calculus modeled after Feath-
erweight Java. A static type system that mirrors the in-
formal rules confinement was proposed and proven sound.
The confinement invariant was shown to hold for well-typed
programs. In the second part of the paper, definition of con-
fined types was extended to confined instantiation of generic
classes. This allows for confined collection types in Java and
for classes that can be confined post hoc. Confinement type
rules are given for Generic Featherweight Java, and proven
sound. A generic confinement invariant is established and
proven for well-typed programs. In future work we plan to
study the relationship between confined types and general
purpose ownership type systems.

Acknowledgments. The authors thank James Noble for
frequent inspiration and encouragements, Dave Clarke for
one fewer reduction rule, Christian Grothoff for his bound-
less energy in generating experimental data, John Boyland
for explaining borrowing, and Phil Wadler for the initial im-
petus to look at generics. Finally we thank the anonymous
referees and attendees of IWACO for their comments.

7. REFERENCES
[1] Paulo Sérgio Almeida. Balloon types: Controlling

sharing of state in data types. In Mehmet Aksit and
Satoshi Matsuoka, editors,
ECOOP’97—Object-Oriented Programming, 11th
European Conference, volume 1241 of LNCS, pages
32–59, Jyväskylä, Finland, 9–13 June 1997.
Springer-Verlag.

[2] Anindya Banerjee and David A. Naumann.
Representation independence, confinement and access
control [extended abstract]. ACM SIGPLAN Notices,
37(1):166–177, January 2002.

[3] Chandrasekhar Boyapati, Robert Lee, and Martin
Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In Proceedings of
the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Appplications
(OOPSLA), November 2002.

[4] Chandrasekhar Boyapati, Alexandru Salcianu,
William Beebee, and Martin Rinard. Ownership types
for safe region-based memory management in
real-time java. June 2003.

[5] John Boyland, James Noble, and William Retert.
Capabilities for aliasing: A generalisation of
uniqueness and read-only. In ECOOP’01 —
Object-Oriented Programming, 15th European
Conference, number 2072 in Lecture Notes in
Computer Science, Berlin, Heidelberg, New York,
2001. Springer.

[6] Dave Clarke, Michael Richmond, and James Noble.
Saving the world from bad Beans: Deployment-time
confinement checking. In Proceedings of the ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Appplications (OOPSLA),
Anaheim, CA, November 2003.

[7] David Clarke. Object Ownership and Containment.
PhD thesis, School of Computer Science and
Engineering, University of New South Wales, Sydney,
Australia, 2001.

[8] David G. Clarke, John M. Potter, and James Noble.
Ownership types for flexible alias protection. In
OOPSLA ’98 Conference Proceedings, volume 33(10)
of ACM SIGPLAN Notices, pages 48–64. ACM,
October 1998.

[9] D. Detlefs, K. Rustan M. Leino, and G. Nelson.
Wrestling with rep exposure. Technical report, Digital
Equipment Corporation Systems Research Center,
1996.

[10] Daniela Genius, Martin Trapp, and Wolf
Zimmermann. An approach to improve locality using
Sandwich Types. In Proceedings of the 2nd Types in
Compilation workshop, volume LNCS 1473, Kyoto,
Japan, March 1998. Springer Verlag.

[11] Christian Grothoff, Jens Palsberg, and Jan Vitek.
Encapsulating objects with confined types. In
Proceedings of the ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Appplications (OOPSLA), 2001.

[12] John Hogg. Islands: Aliasing Protection in
Object-Oriented Languages. In Proceedings of the
OOPSLA ’91 Conference on Object-Oriented
Programming Systems, Languages and Applications,
pages 271–285, November 1991. Published as ACM
SIGPLAN Notices, volume 26, number 11.

[13] John Hogg, Doug Lea, Alan Wills, Dennis
de Champeaux, and Richard Holt. The Geneva
convention on the treatment of object aliasing. OOPS
Messenger, 3(2), April 1992.

[14] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, May 2001.

[15] S.J.H. Kent and I. Maung. Encapsulation and
Aggregation. In Proceedings of TOOLS PACIFIC 95
(TOOLS 18). Prentice Hall, 1995.

[16] James Noble, Jan Vitek, and John Potter. Flexible
alias protection. In Eric Jul, editor, ECOOP’98—
Object-Oriented Programming, volume 1445 of Lecture
Notes In Computer Science, pages 158–185, Berlin,
Heidelberg, New York, July 1988. Springer-Verlag.

[17] J. Vitek and B. Bokowski. Confined types in Java.
Software Practice and Experience, 31(6):507–532,
2001.

