
A Black-box Approach to Understanding
Concurrency in DaCapo

Tomas Kalibera Matthew Mole Richard Jones Jan Vitek
University of Kent, Canterbury Purdue University

Abstract
Increasing levels of hardware parallelism are one of the main
challenges for programmers and implementers of managed
runtimes. Any concurrency or scalability improvements
must be evaluated experimentally. However, application
benchmarks available today may not reflect the highly con-
current applications we anticipate in the future. They may
also behave in ways that VM developers do not expect. We
provide a set of platform independent concurrency-related
metrics and an in-depth observational study of current state
of the art benchmarks, discovering how concurrent they re-
ally are, how they scale the work and how they synchronise
and communicate via shared memory.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features — Concur-
rent Programming Structures

Keywords Benchmarks, DaCapo, concurrency, scalability

1. Introduction
In the face of technological and physical limitations prevent-
ing further clock speed increases, hardware designers have
turned to providing processors with increasing numbers of
cores — Intel has 48-core processors, Tilera 64-core pro-
cessors and Azul ships 54-core × 16 processor systems. All
these systems provide shared memory and varying degrees
of coherency. To keep delivering ever more powerful appli-
cations, programmers must turn their attention to making
good use of those cores. This means not only parallelising
their algorithms, but also avoiding timing accidents due to
non-local memory accesses or cache coherency traffic. Man-
aged language runtimes, or virtual machines (VM), lift some
of this burden. High-level concurrency libraries and runtime

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12 October 19–26, 2012, Tuscon, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

services, such as just-in-time compilation and garbage col-
lection (GC), make it much easier to write code that runs
efficiently on a variety of platforms. To achieve this, VMs
are becoming increasingly aware of architectural issues that
affect scalability. Garbage collectors may be NUMA-aware
when allocating memory, take advantage of multiple cores to
speed up memory reclamation and keep thread-local objects
together to reduce cache coherency traffic.

If researchers are to develop VMs that meet the chal-
lenges set by highly parallel hardware architectures, they
need to know what multi-threaded programs really do. VM
development is often motivated by the performance of a
given system on some suite of well known applications.
Such benchmarks influence development. They may “accel-
erate, retard or misdirect energy and innovation” [6]. The
questions for research on multi- and many-core hardware are
how new designs and implementations scale with increas-
ing numbers of cores. Modern architectures have complex
performance models. When these are coupled with dynamic
code generation and memory management techniques that
move data on the fly, it becomes very challenging to predict
how a particular program will perform and how it will scale.
We argue that a necessary starting point is for researchers to
understand how the benchmarks they use stress the various
components of a platform (e.g. shared memory access, cache
coherency, synchronisation, GC).

We aim to provide insights on the suitability of bench-
marks, particularly those written in Java, for scalability stud-
ies on parallel hardware. We distinguish the terms concur-
rency and parallelism. Concurrency is a software engineer-
ing tool to model real-world systems that has long been used
as a programming model, even on sequential hardware [23].
Concurrent programs can offer better responsiveness [7] by
leveraging the scheduler. Concurrency is also a mechanism
for achieving improved throughput on parallel hardware. We
are interested in the latter. In Java, threads typically commu-
nicate via shared memory. The impact on throughput and
scalability of communication through shared memory is im-
portant for both application programmers and VM designers.
Communication may lead to contention, both for software-
level constructs such as locks, and hardware artefacts such

as cache-lines. VM implementors work hard to reduce the
costs incurred by communication, but in order to design new
optimisations they need benchmark suites that provide rep-
resentative models of applications ‘in the wild’, and insights
into how these benchmarks use shared memory.

An underlying principle of this study is platform inde-
pendence: to explore how benchmarks may behave on any
hardware platform and any language runtime rather than
on just those currently at hand. We use a combination of
observational techniques based on program instrumenta-
tion and on measurements of platform independent metrics.
We measure, for instance, the frequency at which different
threads access a shared object (application behaviour) rather
than measuring hardware performance counters (the con-
sequences of an application’s behaviour given a particular
scheduling on a particular platform).

We focus on Java-level memory operations that are spec-
ified in the source code. These include reads and writes
to fields, monitor acquisitions/releases and object alloca-
tions. Memory operations may stress concurrency mecha-
nisms in two ways. First, objects may be accessed by multi-
ple threads. Second, these may access different objects that
happen to collide in the memory hierarchy, a property known
as false sharing. Both can be the source of non-local mem-
ory access and/or cache coherency traffic. False sharing may
have a significant impact on performance [18] but, since
we are interested in the platform independent behaviour of
applications, we do not focus on it. The stress induced by
shared access may be trivial unless an object is used by mul-
tiple threads repeatedly within some time window. The cost
of such regular accesses depends on the number of changes
of ownership of the object. This can happen through mod-
ifications, typically writes and monitor acquisitions. We in-
vestigate the extent to which more than one thread accesses
a shared object and patterns of these accesses.

Scalability is a core metric for evaluating the performance
of parallel systems. To measure scalability, one would run a
parallel benchmark several times, on a varying number of
cores. One expects a scalable benchmark to divide the work
equally between the available cores, giving a nearly linear
speed-up. We investigate whether benchmarks that are used
to study parallel systems are indeed scalable. We ask how
many threads in these benchmarks take part in concurrency-
stressing memory operations.

We offer a detailed observational study of the DaCapo
Java workloads [6, 20]. Our goal is to provide platform-
independent insights into (a) how concurrent these work-
loads really are, (b) how to characterize the patterns of
concurrent behaviour exhibited by the individual programs,
(c) the extent to which they can be used for testing the scala-
bility of VMs, and (d) the stress they put on memory and par-
ticularly shared memory. The source code of our implemen-
tations is at www.cs.kent.ac.uk/projects/gc/dacapo.

2. Related Work
Dufour et al. proposed a range of dynamic metrics to char-
acterise Java programs in terms of memory use, concur-
rency, and synchronisation [12]. They measured concur-
rency by thread density, the maximum number of threads
ever runnable at the same time, and by the amount of code
executed while a given number of threads are runnable. We
believe that code is not necessarily the most revealing ob-
servable of a concurrent system as, for example, a loop that
only operates over local variables does not really pose any
interesting challenges to a virtual machine and can be run in
parallel with pretty much anything. An arguably better met-
ric is to study memory operations on data that are actually
(or potentially) shared. Furthermore, we posit that only the
threads that do a substantial amount of memory access are
relevant. Consider the case of a benchmark with a large num-
ber of threads that poll on network connections. These are
always runnable but do nearly no actual work. A better way
to get an upper bound on contention might be to measure the
number of monitor hand-offs between threads.

Dufour et al. also argue that metrics should be robust (a
small change in behaviour leads to a small change in value),
discriminating (a large change leads to a large change) and
platform independent. We set out to follow their recommen-
dations, while noting that robustness and discrimination are
somewhat hard to define and some degree of platform de-
pendence is unavoidable (at least due to scheduling).

Gidra et al. measured the scalability of certain runtime
components, such as the various garbage collection algo-
rithms, in the HotSpot Java VM [14]. They found that the cu-
mulative stop-the-world pause times increase with the num-
ber of threads as does the total time spent in GC. They
claim that most object scanning and copying is done by a
GC thread running on a remote node. Although these results
suggest an alarming lack of scalability, they need to be con-
firmed with the NUMA-aware version of the HotSpot GC
which was not used in the study. Chen et al. [8] provide an
observational scalability analysis of HotSpot. They explain
some scalability issues by stalls at the hardware level (cache
misses, DTLB misses, pipeline misses and cache-to-cache
transfers) and measure the benefits of thread-local allocation
buffers and a HotSpot heuristic for determining a good size
of the young generation. They find the benefits to be appli-
cation dependent, but not very VM dependent.

In terms of program instrumentation, we followed in the
footsteps of Binder et al. [4]. Their approach differs in that
they statically instrument core classes that are loaded before
an agent can take control, which allows them to add fields to
these classes. We use an agent instead, both to re-instrument
classes already loaded and to instrument new classes as they
load.

Relative Speedup AMD

Processors (Driver Threads)

S
pe

ed
up

1 4 8 16 32 64

0.
5

1
2

5
10

20
40

64

●

●

●

● ●

●

●

●

●

●

●

●

sunflow
tomcat
lusearch
xalan
tradesoap
tradebeans
h2

(a) 64-core 4-node AMD; HotSpot 1.7.
Relative Speedup Azul

Processors (Driver Threads)

S
pe

ed
up

1 4 8 16 32 64

0.
5

1
2

5
10

20
40

64

●

●

●

●

●

●

●

●

●

●
●

●

sunflow
tomcat
lusearch
xalan
tradesoap
tradebeans
h2

(b) Azul Vega 3, 864 processors; Azul VM 1.6.
Relative Speedup

Processors (Driver Threads)

S
pe

ed
up

1 4 8 16 32 64 128 256 512 1024

0.
2

0.
5

1
2

5
10

20
40

10
24

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

sunflow
tomcat
lusearch
xalan
tradesoap
tradebeans
h2

(c) Azul Vega 3, 864 processors; Azul VM 1.6.

Figure 1: Speedup v. number of driver threads, Dacapo’09.

3. DaCapo
Blackburn et al. [6] introduced the DaCapo benchmarks in
2006 and provided performance measurements and work-
load characteristics, such as object size distributions, allo-
cation rates and live sizes. The original1 suite consists of the
following benchmarks: antlr6 generates a parser and lex-
ical analyzer, bloat6 performs a number of optimisations
and analyses on Java bytecode files, chart6 plots line graphs
and renders PDF, eclipse6 runs tests for the Eclipse IDE,
fop6 generates a PDF file, hsqldb6 executes a number of
transactions, jython6 interprets the pybench Python bench-
mark, luindex6 indexes a set of documents, lusearch6

searches for keywords, pmd6 analyzes a set of Java classes
and xalan6 transforms XML documents into HTML. The
DaCapo 2009 suite updated a few of the original bench-
marks, eclipse9, fop9, jython9, luindex9, lusearch9,
pmd9 and xalan9, as well as introducing new applications:
avrora9 is a simulation program, batik9 produces SVG
images, h29 executes a number of transactions, sunflow9

renders a set of images using ray tracing, tomcat9 runs a set
of queries against a web server, tradebeans9 and trade-

soap9 run the daytrader benchmark.
Multi-threading is not widely used in DaCapo 2006,

with only three programs using more than one thread (lu-
search6, hsqldb6 and xalan6). DaCapo 2009 supports
scaling of seven benchmarks to an arbitrary number of driver
threads with identical copies of the code on subproblems. By
default, the suites use the number of logical processors in the
system. This does not mean, however, that the benchmarks
scale well. There are two ways to evaluate scalability —
vary either the number of physical cores available to the
whole system (operating systems allow this), or the number
of driver threads. The former has been used [8] but the lat-
ter is more convenient [14]. The implied assumption in both
cases is that the amount of work done remains the same.

When run on a 64-core AMD system, sunflow9 keeps
improving as cores are added. Figure 1(a) shows that only
sunflow9 and tomcat9 are able to get more than 10× speed
up. tradesoap9 barely gets more than a 3× improvement.
tradebeans9 and h29 actually report degraded throughput
with higher thread counts. For comparison, Figure 1(b) re-
ports the result on an Azul system. Here, scalability is not
as good. Only three benchmarks get a speedup better than
5× (sunflow9, xalan9, lusearch9). tomcat9 scales better
on the AMD. Absolute throughput numbers are also much
higher on AMD. Azul numbers for more than 64 threads
are shown in Figure 1(c). Other than sunflow9 which sees
small improvements up to 256 threads, performance is ei-
ther stable or decreases with more cores (h29 is striking). Of
the seven ’09 benchmarks that do not support driver-thread
scaling, avrora9, eclipse9, pmd9 and luindex9 are multi-
threaded.

1 We distinguish versions of DaCapo by a ‘6’ (2006) or ‘9’ (2009) subscript.

Periodic density / spot-shared 0 { }}{ }{

Density / spot-shared 1 { }

Periodic density / shared 1 { }}{ }{

2Density / shared { }

1Periodic density / any { }}{ }{

Density / any 3 { }

period

reset

Figure 2: Concurrency metrics. Each solid symbol in the timeline is an operation performed by a thread on some object.
Different symbols denote operations by different threads. We count the number of threads that perform operations (open
symbols) in some intervals. The value of a metric is the median of the cardinalities of these sets of operations performed.

4. Metrics for Concurrency
We devised new metrics to characterize how concurrent ap-
plications use shared memory. Communication patterns be-
tween threads are key to understanding concurrent multi-
threaded applications. In Java, this is typically achieved
through shared memory and synchronization.2 Thus our
measurements focus on memory locations that are shared
by multiple threads and on the choice of mechanisms for
synchronization between threads.

4.1 Characterising Concurrency
Occasional communication adds little overhead so we fo-
cus on those threads that contribute significantly to the work
done by a benchmark in some interval, e.g. the entire exe-
cution or, of more interest, some shorter interval. If we are
interested in which phases of execution threads are active,
the metric might be to count how many threads contribute
significantly (95% of the operations) in each 100ms period
and then compute the median. Objects may be shared only
transiently and otherwise accessed by only one thread at a
time. As widely spaced operations on an object by different
threads are unlikely to be interesting, we might rather con-
sider only operations by different threads in some small spot
interval. To capture this, a metric might reset the status of
‘spot-shared’ objects to ‘local’, or unshared, at regular inter-
vals (say, every 10ms), and then count only sharing within
these intervals.

We start with an example, computing some of our metrics
for the trace in Figure 2, which shows some operations, say
12 writes, performed on a single object by three threads (de-
noted by � , • and N). We motivate our choice of metrics
as follows.

2 Synchronization mechanisms include synchronized statements, bar-
riers with wait/notify, volatile variables, atomic classes from the
java.util.concurrent.atomic package and other high level abstrac-
tions such futures or concurrent queues.

• Density / any counts all the different threads that con-
tribute significantly to each operation on an object through-
out the execution. In Figure 2, three threads contribute.
However, as we discussed earlier, we want to exclude
operations that are not particularly interesting for con-
currency.

• Density / shared We are interested in the impact of com-
munication between threads. This metric also computes
thread density, but only for objects that have become
shared. In Figure 2, the object is not shared initially so
we count only the operations performed by the • and
N threads.

• Periodic density / any This metric captures how threads
may be active in different phases. For example, an initial-
isation phase may construct an object which is then used
in later phases. To capture this, we divide execution into
periods, compute the thread density in each one and re-
port the median. In the example, we see that 1, 1 and 2
threads act on the object in each period respectively; the
periodic density is 1.

• Periodic density / shared A single thread might only
initialise an object but then hand it on to another thread
for use. This pattern is unlikely to stress concurrency
mechanisms — indeed, the lifetimes of the two threads
may not even overlap. This metric tends to exclude such
behaviour by computing the periodic thread density for
objects that have become shared. In our example, there
are 0, 1 and 2 operations on shared objects in each period
respectively, so the median is 1.

• Density / spot-shared We are particularly interested in
the pressure placed upon concurrency mechanisms by ob-
jects whose ownership changes rapidly. Examples might
include contended locks, volatiles and other objects used
for synchronization. ‘Spot-sharing’ resets objects’ shared
status regularly. This metric measures the thread density

of recently (i.e. spot-shared) objects only. For example,
in Figure 2, only the• thread discovers a recently shared
object.

• Periodic density / spot-shared Finally, we are interested
in the concurrency pressure in different phases of the
program. Thus, this metric computes the period density
of spot-shared objects.

4.2 Traces
Some metrics require precise definition to understand what
behaviours we capture. In the definitions below, we assume
the presence of a full trace of the program, although our im-
plementation is mostly on-the-fly. Let a log L be a sequence
of time-stamped operations: allocations, reads, writes and
monitor enters.

L ≡ {aτto : thread τ allocated object o at time t}
∪ {rτto : thread τ read from object o at time t}
∪ {wτto : thread τ wrote to object o at time t}
∪ {eτto : thread τ entered monitor of object o at time t}

We assume that no two operations can happen at the same
time. We use the meta-variable α to range over operations.
Filter L↓T selects operations from a time interval T :

L↓T≡ {ατto ∈ L : t ∈ T}

To select only operations of specific type, e.g. reads, we
write L↓r. To select operations of more than one type from
L, say reads and writes, we write L↓rw. We write L∗ for a
set {L1, L2, . . . , Ln}. Filter on L∗ extends to its inner-sets:
L∗↓T= {L1↓T , L2↓T , . . . , Ln↓T }.

4.3 Operations
We can describe numbers of individual operations and their
ratios — interesting as metrics of workload intensity and of
the balance of operations — such as:

total number of reads |L↓r |
ratio of reads and writes |L↓r | / |L↓w |

We further split the counts into operations on arrays, object
instance fields and static fields. We also compute the rate of
the different operations. Operations are counted in instru-
mented benchmarks, where overheads are large, but rates
are computed by dividing them by the execution time of the
uninstrumented benchmark. Execution times obviously de-
pend on the clock speed of the hardware used. To minimise
this dependency, we normalise rates. That is, rather than re-
porting the absolute rate x of an operation in a benchmark,
we sometimes give the normalised rate (x − µ)/σ where
µ is the mean across all benchmarks and σ2 the variance.
This transforms the distribution to one with mean 0 and vari-
ance 1.

4.4 Aging
Object behaviour is well known to vary by age. We want to
understand the interaction between object age and concur-
rency related attributes such as sharing, the age at which an
object is accessed, and so on. We measure age in the number
of timer ticks (with a period of 10ms), which we adjust to an
approximate time in uninstrumented execution as follows:

approx .time = ticks× period× timeu

time i

where timeu and time i are the uninstrumented and instru-
mented execution times of the benchmark respectively.

4.5 Shared Memory Accesses
Shared memory accesses are one of the key observables for
this work. We describe them using the following functions.
A shared access is an operation for which the object accessed
was previously allocated, written to or synchronized on by
another thread.

ShrR(L) ≡{rτto ∈ L : ∃ ατ
′

t′o ∈ L↓[0,t) ∧ τ ′ 6= τ}
ShrW (L) ≡{wτto ∈ L : ∃ ατ

′

t′o ∈ L↓[0,t) ∧ τ ′ 6= τ}
ShrE (L) ≡{eτto ∈ L : ∃ ατ

′

t′o ∈ L↓[0,t) ∧ τ ′ 6= τ}

A write or monitor entry is said to be alternating if the
immediately preceding access (excluding reads) was by a
different thread.

AltW (L) ≡ {wτto ∈ L : ∃ ατ
′

t′o ∈ L↓[0,t),wea ∧
τ ′ 6= τ ∧ 6 ∃ ατ

′′

t′′o ∈ L↓(t′,t),wea}
AltE (L) ≡ {eτto ∈ L : ∃ ατ

′

t′o ∈ L↓[0,t)wea ∧
τ ′ 6= τ ∧ 6 ∃ ατ

′′

t′′o ∈ L↓(t′,t),wea}

We define additional functions to select shared operations
on objects that have been accessed by a different thread re-
cently. For this we use time windows of a constant length,
ε. In practice we use periods of 10ms of instrumented exe-
cution. As the instrumentation overhead is large, this corre-
sponds to a much shorter interval of uninstrumented execu-
tion.

SpotShrR(L) ≡ {rτto ∈ L : ∃ ατ
′

t′o ∈ L↓[εbt/εc,t] ∧τ ′ 6= τ}
SpotShrW (L) ≡ {wτto ∈ L : ∃ ατ

′

t′o ∈ L↓[εbt/εc,t] ∧τ ′ 6= τ}
SpotShrE (L) ≡ {wτto ∈ L : ∃ ατ

′

t′o ∈ L↓[εbt/εc,t] ∧τ ′ 6= τ}

We define spot-shared operations based on what has al-
ready happened in their time-window, L[εbt/εc, t], which
allows efficient implementation with periodic timer. A sys-
tem recording a full trace could define spot-sharing based
on what happened up to ε (seconds) before the operation of
interest, L↓[t−ε,t].

The definitions allow metrics for numbers of shared op-
erations of each type and for their ratios. Examples include

(more in our results section):

total number of shared reads |ShrR(L)|
total number of spot-shared writes |SpotShrW (L)|
ratio of shared reads and writes |ShrR(L)|/|ShrW (L)|

Before attempting to optimise a system, it is often im-
portant to understand how contributions to a metric are dis-
tributed. Commonly, a few elements dominate. We define the
function covers that tests whether a set of threads Θ ‘covers’
a significant fraction ρ of operations in a given log L:

covers(Θ, L) ≡ |L↓Θ | ≥ ρ|L|

The covset function returns the smallest subset of threads
that cover a significant number of operations in L:

covset(L) ≡ min{θ ∈ 2Θ : covers(θ, L)}

This function gives us the most active threads in the set,
which is useful in understanding the program. For example,
we might report the smallest age for which ρ = 95% of
all accesses are to objects younger than that age. We define
the thread density of a set of operations as the size of the
covering set: density1(L) ≡ |covset(L)|. We further define
the density of multiple sets of operations, so that we can
cover each individual type of operation (i.e. reads, writes).
The generalized function is:

density(L∗) ≡

∣∣∣∣∣ ⋃
L∈L∗

covset(L)

∣∣∣∣∣
Note that density is trivially not equivalent to the density of
the union of the operations density1(∪L∗). This alternative
definition is possible, but our definition has the advantages
that it does not give preference to any kind of operation (any
element of L∗), and it is easier to implement. We base the
following concurrency metrics on density :

• thread density with any operations:

density({L↓r, L↓w, L↓e, L↓a})
• thread density with shared operations:

density({ShrR(L),ShrW (L),ShrE (L)})
• thread density with alternating modifications:

density({AltW (L),AltE (L)})
• thread density with spot-shared operations:

density({SpotShrR(L),SpotShrW (L),SpotShrE (L)})

Shared activity may be concentrated in only a short inter-
val of a program’s execution. The level of true concurrency
will be lower than the density if the activities of some of the
threads do not overlap. To better capture this, we consider
thread activity in each of a number of small intervals, or pe-
riods — we use periods of 100ms of instrumented execution.

Formally, we define periodic density to focus on time win-
dows of a constant length δ > 0. We summarise densities
using medians,

pdensity(L∗) ≡ median
k∈N

(
density(L∗↓[k·δ,(k+1)·δ))

)
Based on pdensity , we define the following metrics:

• periodic thread density with any operations:

pdensity({L↓r, L↓w, L↓e, L↓e})
• periodic thread density with shared operations:

pdensity({ShrR(L),ShrW (L),ShrE (L)})
• periodic thread density with alternating modifications:

pdensity({AltW (L),AltE (L)})
• periodic thread density with spot-shared operations:

pdensity({SpotShrR(L),SpotShrW (L),SpotShrE (L)})

Any value returned is an upper-bound on the true concur-
rency, because our window can always be so large that it
regards sequential activity as concurrent. δ and ε should be
as small as possible, but δ must be much larger than ε for
spot-metrics to be stable.

4.6 Concurrency Patterns of Shared Accesses
We explore a number of common concurrency patterns fur-
ther. One such pattern is CREW: concurrent read, exclusive
write. Another is unique ownership, where only one thread
owns an object at a time and a thread only accesses ob-
jects that it owns. A particular example might be that a pro-
ducer thread creates an object before passing it to consumer
threads. A special case is a stationary object, which is cre-
ated by one thread and then read by other threads but never
written again.

An object o is stationary in trace L at time t if it is never
written after being read, including if it has never been written
at all. An object o is single-writer in trace L at time t if it has
been written to by at most one thread before t:

readonly(o, t, L) ≡ |L↓[0,t],w | = 0

writeonly(o, t, L) ≡ |L↓[0,t],r | = 0

stationary(o, t, L) ≡ writeonly(o, t, L) ∨

max
t′

(
wτ
′

t′o ∈ L↓[0,t]
)
< min

t′

(
rτ
′

t′′o ∈ L↓[0,t]
)

singlewriter(o, t, L) ≡ |{τ ′ : ∃wτ
′

t′o ∈ L↓[0,t]}| ≤ 1

A thread τ is the owner of an object o at time t if no other
thread has accessed the object since τ ’s last access. Access
α to an object o by a thread τ is same-owner when τ owns
o:

owner(τ, o, t, L) ≡ ∃ατt′o ∈ L↓[0,t]:

t′ < t ∧
(
∀ατ

′

t′′o ∈ L↓[t′,t] : τ = τ ′
)

sameowner(ατto, L) ≡ owner(τ, o, t, L)

Based on these definitions, we say that a shared read is
‘read-only’ if it is to a read-only object, ‘stationary’ if it is
to a stationary object, ‘single-writer’ if it is to a single-writer
object and ‘same-owner’ if sameowner holds. Similar def-
initions apply to writes. We now define five disjoint shar-
ing patterns that cover all shared accesses, and we use these
to characterise individual benchmarks and individual access
types (all reads and writes, reads and writes separately, stat-
ics, arrays, etc):

•S1, shared read-only/write-only accesses:

read-only reads and write-only writes

•S2, additional shared stationary accesses:

stationary accesses that are not S1

•S3, other shared, single-writer accesses:

single-writer accesses that are not S1 or S2

•S4, other shared, same owner accesses:

same-owner accesses that are not S1, S2 or S3

•S5, all remaining shared accesses:

all shared accessed not S1-S4

Note that ‘read-only’ reads are also stationary. While not
a property of the definitions, in DaCapo stationary reads
are also single-writer. Hence, S1+S2 includes all stationary
reads and S1+S2+S3 includes all single-writer reads. S2 is
an empty set for writes because all stationary writes are also
‘write-only’ by definition. Hence S1+S2 includes all station-
ary accesses even for writes. Not all ‘write-only’ writes are
single-writer. For example, when an array is used to collect
results from multiple threads, the collection will be formed
by ‘write-only’ writes.

To obtain the disjoint groups S1-S5, in our implementa-
tion we count shared accesses that are read-only/write-only,
stationary, single-writer, both single-writer and stationary,
same-owner but neither stationary nor single-writer, and all
shared accesses (of any pattern).

4.7 Shared-Used and Shared-Reachable
It is often interesting for implementers to know which ob-
jects were actually accessed by multiple threads as well as
which objects could possibly have been accessed by multi-
ple threads. For this purpose we will define the notions of
shared-used for an object that is used by multiple threads
and shared-reachable for an object that could be accessed
by multiple threads based on reachability.

5. Measurement Methodology
We measure behaviour through instrumenting Java programs
and the VM with two independent infrastructures, one that
depends solely on bytecode instrumentation and the other
inside Jikes RVM.

5.1 Bytecode Instrumentation
Java’s dynamic instrumentation feature allows instrumenting
the bytecode of any class that the VM loads. The logic of
our probes is implemented in Java and runs in the same VM,
but we isolate its direct impacts from our measurements. We
customised btrace [2] for our needs.

Design. We insert probes at instructions of interest, such
as field accesses, calls or synchronisation points. A probe
might update an object-related metadata structure (e.g. to
mark the object as ‘shared’) stored in a hash table. A probe
might also increment a thread-related thread-local counter.
We designed our own hash table for the metadata as we
require fast look-up, safety in the presence of concurrent
access and realistic accounting. Each bucket (a collision set)
has a separate self-organising single-linked queue for each
thread. When looking for metadata of a given object, a probe
locates the correct bucket and then searches the queue of
the current thread. It will find an entry there for any thread-
local object and also for any shared object that the thread has
accessed before. Each entry contains a weak reference to the
object it represents and a regular reference to metadata for
that object. Periodically, entries of dead objects are detected,
processed and removed from the queues.

Whenever an entry is found in the local queue it is
moved to the front (self-organisation) for performance rea-
sons. If the entry is not found in the local queue, queues of
other threads are searched (again, the search order is self-
organising, first searching queues of threads where entries
had been found recently). Once found, the entry is copied
to the local queue for faster access next time. The only syn-
chronization needed is between a thread moving an entry to
the head of the local queue and a remote thread scanning the
queue. In the rare case of contention, remote threads spin
but local threads give up moving an entry to the front of
the queue. A dedicated timer thread samples thread-based
counter values and prints them to a file every 100ms (instru-
mented time). The timer thread is paused during the (stop-
the-world) GC, excluding it from our measurements.

Obstacles. To circumvent the 64KB Java method size
limit, we optimised btrace to generate fewer instructions.
We disabled instrumentation for static initialisers for a few
constant arrays in batik and fop. We disabled the byte-
code verifier in order to insert probes after the new bytecode
but before the constructor’s <init> method. We modified
btrace to instrument libraries before running the application
to increase precision of tracing, and so that its own activity
can be isolated. We also extended it to keep a cache of field

modifiers known at instrumentation time and to pass class
references to probes, so that our probes can always deter-
mine if an access is to a volatile field. Some applications
are sensitive to timeouts, so we increased the initialisation
deadlines in the DaCapo harness and patched some JDK 7
classes to ignore timeouts. We fixed bugs in tomcat9 and
btrace.

Platform and Benchmarks. We used DaCapo 2006-10-
MR2 [6] and 9.12-bach with their largest inputs. Trace
data is collected on one iteration of the benchmark ex-
cluding start-up. Timings are recorded on uninstrumented
runs where we strived to get at least 5 repetitions and 10
iterations; unless specified otherwise timings are the mean
of these runs. We ran HotSpot 1.7.0 01 for Linux/x86 64,
btrace [2] 1.2.1 and ASM [1] 3.3 on a 4.8GHz Intel Core i7,
with 4 hardware threads (hyper-threading disabled) and
16GB of RAM. For instrumented runs, we allowed the VM
to use 14GB of RAM. Some experiments were run on an
Azul Vega 3 with 864 processors with the Azul VM 1.6.

Limitations. Our instrumentation may prevent some opti-
misations. Some sampling error is inevitable, but sampling is
unlikely to be very regular, so errors should be random and
easy to spot when we look at multiple results. Our instru-
mentation may influence thread interleaving and hence some
of the sharing and concurrency characteristics we measure.

5.2 Virtual Machine Instrumentation
Although our bytecode instrumentation can measure which
objects are accessed by more than one thread, it cannot de-
tect the number of objects reachable from a thread. However,
components of the GC do precisely this. The extensible de-
sign of Jikes RVM [3] makes it ideal for such experiments.

Design. We customise the compiler to insert probes after
memory relevant operations. We ensure that probes are nei-
ther instrumented nor call any instrumented code. We apply
the probes only to application and not to VM code. We add
metadata pertaining to threads to the VM, and that pertaining
to objects into their header. We map memory operations into
reads and writes and count them per object. For each object
we keep two bitmaps, one of all threads that ever accessed
it and one of all threads from which it was ever reachable.
To identify reachable objects, we run mock per-thread traces
through the heap, recording the set of objects each thread
can reach at that time.

Obstacles. We extended Jikes RVM to instrument accesses
to primitive fields. Probes for static fields require special
care: they need class-based metadata which we keep in the
VM’s internal representation of the classes, but this is only
available when the containing class is loaded. Filtering out
VM-specific activity is complicated by the VM allocating
its objects in the same heap. We adopt the methodology of
Jones & Ryder [16] and use Jikes RVM’s baseline compiler.
We count only operations by application threads, including

the finaliser and reference handler threads; we exclude all
other VM threads. We force a special GC at shut down to
count any remaining live objects.

Platform and Benchmarks. We modified a development
version of Jikes RVM (21/7/11), and ran all the benchmarks
that Jikes RVM could run on a dual quad-core 2.27GHz Intel
Xeon machine with 12GB RAM. We let the benchmarks
scale the workload to use all available processors.

6. Characterising the DaCapo Workload
The DaCapo suites’ use of concurrency is complex. In some
cases, it is used primarily as a design tool; in other cases,
the goal is performance on parallel hardware. The DaCapo
harness allows setting the number of threads that drives
the workload, but this does not fully determine how many
threads do a substantial amount of work concurrently. Work-
loads often spawn threads of their own, either directly or in-
directly through libraries. Some threads live for the entire
execution of the benchmark, some only for one iteration and
some only for short-term tasks within iterations. Some are
active throughout whole execution of the benchmark, some
only throughout one iteration (e.g. avrora9) or some phase
of it (e.g. h29), and sometimes tens or hundreds of threads
are created each for a single short-term task (e.g. eclipse9).
Moreover, the number of threads spawned may depend on
the hardware — tomcat9 spawns poller threads that service
network connections depending on the number of logical
processors available. On the other hand, even benchmarks
that do not spawn any new threads can generate work for
the VM’s reference handler and finaliser threads. Our goal
is provide a black-box view of these applications and thus
give developers an understanding of the benchmarks’ use of
concurrency.

6.1 Operations
We summarise the operations performed by the DaCapo
benchmarks in Figure 3. The figure compares statistically
normalised rates across benchmarks (higher means that a
benchmark performed relatively more operations of that par-
ticular kind than other benchmarks). For instance, the graph
shows that the lusearch9 benchmark allocates fewer but
larger objects than average; it acquires fewer monitors but
makes more memory accesses. xalan9 enters by far the
most locks per second of any benchmark (and nearly 4 stan-
dard deviations more than the mean over all benchmarks).

We examine memory operations known to be of interest
to GC design. Some of the benchmarks in the suite are quite
memory intensive. lusearch9 has by far the largest alloca-
tion rate (4GB/s),3 followed by xalan6 (1.7GB/s) and sun-

flow9 (1.4GB/s). The median allocation rate is 424MB/s.
The highest rate of memory accesses (reads+writes) is for
sunflow9 (5.9G/s), followed by bloat6 (3.3G/s) and xal-

3 1KB of memory is 1024 bytes, but 1K objects is 1000 objects.

an
tlr

6

av
ro

ra
9

ba
tik

9

bl
oa

t6

ch
ar

t6

ec
lip

se
6

ec
lip

se
9

fo
p6

fo
p9 h2

9

hs
ql

db
6

jy
th

on
6

jy
th

on
9

lu
in

de
x6

lu
in

de
x9

lu
se

ar
ch

6

lu
se

ar
ch

9

pm
d6

pm
d9

su
nf

lo
w

9

to
m

ca
t9

tr
ad

eb
ea

ns
9

tr
ad

es
oa

p9

xa
la

n6

xa
la

n9

Reads and Writes
Bytes Allocated
Objects Allocated
Monitors Entered

Workload Intensities
N

or
m

al
iz

ed
 V

al
ue

s
(Z

er
o

M
ea

n,
 U

ni
t V

ar
ia

nc
e)

−1

0

1

2

3

4

Figure 3: Operations per second normalised to have zero mean and unit variance. Intuitively, this shows how each benchmark
differs from the DaCapo average in a way consistent across different measures such as bytes allocated or monitors entered. For
example, we see that lusearch9 allocates more space than average but enters fewer monitors.

an6 (3.1G/s). The lowest access read+write rate is by fop6

(95M/s) and the median is 806M/s.
All benchmarks do more reads than writes. The geomean

read/write ratio is 3, highest with sunflow9 (11×), h29

(11×) and hsqldb6 (8×), and lowest with jython6 (2×).
The distribution is right-skewed (to higher values). Signif-
icantly more reads than writes is a well known property of
most programs, e.g. exploited by replicating and genera-
tional GCs. The read/write ratio is higher for scalars than
for arrays. The ratio of scalar/array memory accesses dif-
fers greatly across benchmarks. It is highest with avrora9

(13×), followed by sunflow9 (7×) and bloat6 (6×). There
are more array accesses than scalar ones for only three
benchmarks, batik9 (scalar/array ratio 0.65×), jython6

(0.78×) and tomcat9 (0.94×). Most accesses are non-static.
The non-static/static ratio ranges from 7× (jython9) to as
much as 480× (sunflow9), with geomean 40× and median
38×. Statics also have a very large read/write ratio (3.7K×
geomean, 20× minimum and 436K maximum).

All metric distributions were heavily right-skewed to-
wards higher values. This has a serious consequence for per-
formance evaluation. Summaries over these benchmarks are
unlikely to be robust and omitting a benchmark for any rea-
son, good or bad, might influence results. Furthermore, re-
sults are very sensitive to errors when measuring the ‘out-

lying’ benchmarks. They are also sensitive to errors in these
benchmarks (e.g. the very large allocation rate in lusearch9

is due to a bug in the lucene library [24]).
It is therefore essential to interpret benchmark perfor-

mance results individually. A good strategy for optimisation
might be to pick one benchmark with a high overhead to
attack and then look at ways to make it faster without dras-
tically slowing others, e.g. by optimising reads and writes in
sunflow9, locking in xalan6 or GC in lusearch9.

6.2 Age
Recall that our metric is the smallest age for which 95%
of all accesses are to younger objects. For all but 2 of the
benchmarks, this age for reads is equal to or larger than that
for writes. The geomean age over all benchmarks is about
8× larger for reads than for writes. Thus writes clearly hap-
pen early in an object’s life: this agrees with other work [5].
We express this by saying that “reads are older than writes”.
Young accesses do not dominate. In many benchmarks, even
very old (several seconds) objects are often accessed. In par-
ticular the age of reads is often proportional to execution
time.

A
ny

O
ps

A
lt.

M
od

ifs

Sp
ot

-s
ha

re
d

Sh
ar

ed

A
ny

O
ps

A
lt.

M
od

ifs

Sp
ot

-s
ha

re
d

Sh
ar

ed

#
of

Th
re

ad
s

Density Periodic density
avrora9 25 22 25 25 22 22 22 22 30
xalan6 8 8 8 8 8 8 8 8 12
tomcat9 9 15 12 14 9 8 7 8 26
tradesoap9 13 44 32 28 7 13 12 11 267
h29 5 4 4 5 4 4 4 4 9
tradebeans9 4 4 4 4 4 4 4 4 221
xalan9 4 4 4 4 4 4 4 4 8
pmd9 5 5 5 5 4 4 3 3 8
hsqldb6 201 385 382 393 1 34 15 15 405
lusearch6 63 59 66 64 44 0 57 59 68
lusearch9 4 5 5 5 4 0 4 4 8
sunflow9 9 9 9 9 4 0 4 4 13
antlr6 1 1 1 2 1 0 0 1 4
batik9 3 3 5 6 1 0 0 1 11
bloat6 1 1 1 2 1 0 0 0 4
chart6 1 2 1 3 1 0 0 0 6
eclipse6 2 6 5 5 1 0 0 1 53
eclipse9 28 197 191 72 1 1 0 1 341
fop6 1 1 1 2 1 0 0 0 4
fop9 1 1 1 2 1 0 0 1 4
jython6 1 1 1 2 1 0 0 0 4
jython9 1 1 2 2 1 0 0 1 4
luindex6 1 2 2 2 1 0 0 1 4
luindex9 2 3 3 3 1 0 0 1 5
pmd6 1 1 1 2 1 0 0 1 4

Table 1: Levels of concurrency. Numbers of threads that contribute significantly over all execution or periodically (within any
100ms interval). Work is any read, write or monitor enter (Any, Spot-shared, Shared), or alternating writes and monitor enters
(Alt.Modifs).

Threads

R
el

at
iv

e
In

cr
ea

se
 in

 M
et

ric

h29

2 3 4

0.
6

0.
8

1
1.

2
1.

5
2

●
●

● ●

Threads

R
el

at
iv

e
In

cr
ea

se
 in

 M
et

ric

lusearch9

2 3 4

0.
6

0.
8

1
1.

2
1.

5
2

●
●●
●

Threads

R
el

at
iv

e
In

cr
ea

se
 in

 M
et

ric

sunflow9

2 3 4

0.
6

0.
8

1
1.

2
1.

5
2

● ●

● ●

Threads

R
el

at
iv

e
In

cr
ea

se
 in

 M
et

ric

tomcat9

2 3 4

0.
6

0.
8

1
1.

2
1.

5
2

● ●
●

●

Threads

R
el

at
iv

e
In

cr
ea

se
 in

 M
et

ric

tradebeans9

2 3 4

0.
6

0.
8

1
1.

2
1.

5
2

●
●

● ●

Threads

R
el

at
iv

e
In

cr
ea

se
 in

 M
et

ric

tradesoap9

2 3 4

0.
6

0.
8

1
1.

2
1.

5
2

● ●

●
●

Threads

R
el

at
iv

e
In

cr
ea

se
 in

 M
et

ric

xalan9

2 3 4

0.
6

0.
8

1
1.

2
1.

5
2

● ●

●

●

●

●

Shared Reads
Shared Writes
Shared Entries
Spot−shared Reads
Spot−shared Writes
Spot−shared Entries
Alternating Writes
Alternating Entries

Figure 4: Increase in shared operations as driver threads are increased from 2 to 4.

6.3 Levels of Concurrency
Table 1 gives the number of threads that contribute signifi-
cantly to DaCapo workloads on a 4-core machine.4 It tells us
how parallel and multi-threaded the benchmarks really are,
not simply the number of threads that they spawn.5

DaCapo’09 “was designed to expose richer behaviour
and concurrency on large working sets” [13]. However, our
measurements show that only 9 of 14 DaCapo’09 bench-
marks (and 2 of 11 DaCapo’06) are meaningfully parallel,
i.e. have a periodic density/any ops greater than 1. Only these
benchmarks can be expected to scale. Note a large value for
periodic density/any ops is an indication of parallel slack-
ness [22].

eclipse9 and hsqldb6 are heavily multi-threaded (large
density/any ops) but not parallel. Multi-threaded non-parallel
benchmarks, as expected, do not pose a significant challenge
to shared memory (periodic density with alt modifs, spot-
shared, and shared ops is 1 or 0), and hence are not suitable
for evaluating concurrency-related performance optimisa-
tions. Indeed, the lack of any challenge to shared memory
is good for scalability of parallel benchmarks. sunflow9

and lusearch9 have scarcely any alternating modifications;
sunflow9 scales best and lusearch9 second/third best of
the DaCapo’09 benchmarks). Note that few alternating mod-
ifications implies few contended monitor enters.

The number of threads created (last column in Table 1,
which includes the finaliser and the reference handler threads)
is a poor approximation of concurrency — the number of
threads doing a meaningful amount of work (density/any
ops) is much smaller, and even smaller is the number of
threads doing so concurrently (periodic density/any ops).

6.4 Scaling Workloads
We explore how the DaCapo’09 benchmarks with significant
levels of concurrency (h29, lusearch9, sunflow9, tom-
cat9, tradebeans9, tradesoap9, xalan9) behave as we
drive them with 1, 2, 3 or 4 threads. If developers are to use
a benchmark for scalability experiments, they need some in-
tuition for the impact of adding cores/threads. For instance,
they may expect a scalable benchmark either to divide the
same amount of work among more threads (better perfor-
mance) or to continue to give the same quantum of work to
each thread (more work done). Above all, they need a bench-
mark to behave predictably.

Unshared operations behave as expected: their numbers
are preserved as the number of driver threads increases. Un-
fortunately, none of the benchmarks scales its shared opera-
tions in a predictable and consistent way. lusearch9, xal-
an9 and tradesoap9 seem to perform the same number of
‘shared’ operations for 2, 3 and 4 threads, but fewer for 1
thread. This suggests that the degree of sharing in these pro-

4 Note that the metrics allow density to be greater with ‘alt. modifs’ than
‘any ops’.
5 Threading in DaCapo 9-12, dacapobench.org

grams is determined directly or indirectly by the number of
driver threads. On the other hand, the level of sharing in the
remaining benchmarks (h29, sunflow9, tomcat9, trade-
beans9) seems to be fixed.

Figure 4 compares the change in numbers of operations
with 2, 3 and 4 driver threads. The figure shows ‘shared’
and ‘spot-shared’ reads, writes and monitor enters, as well as
‘alternating’ writes and monitor enters. None of the bench-
marks scale the numbers of either ‘spot-sharing’ operations
or ‘alternating modifications’ in a predictable fashion: often,
as the number of one operation increases the number of an-
other decreases. As the number of driver threads increases
from 2 to 4, the number of alternating reads in xalan9 in-
creases by over 1.5×. xalan9 is memory intensive so this
suggests that memory is likely to become bottleneck. The
‘shared’ operations stay about the same with all benchmarks,
which tallies with the intuition that worker threads make the
same number of accesses if the problem size remains con-
stant. tomcat9 is the best scaling benchmark. Observe that
its ‘spot-shared’ and ‘alternating’ operations do not increase
with the number of driver threads: both of these kinds of
operation are inhibitors to scalability. In contrast, the num-
ber of ‘alternating writes’ increases in h29, the worst scaling
benchmark. Alternating entries also appear to increase with
workers in sunflow9, but do not hinder scaling because they
are so infrequent (Table 3).

These results show that one cannot easily evaluate how
the benefit of a VM optimisation changes with the number
of processors, at least not without checking the changes in
concurrency stress.

6.5 Shared Memory Accesses
Most DaCapo’06 benchmarks have a single user thread, so it
is no surprise that in 10 out of 25 benchmarks less than 0.5%
of reads and writes are ‘shared’. In each of the remaining 15
benchmarks, the fraction of shared reads tends to be much
higher than the fraction of shared writes (Table 2). Shared
accesses are therefore even more heavily dominated by reads
(28× by geomean) than are thread-local accesses (3×). Ar-
ray accesses are more shared than scalar accesses in most
of these benchmarks (10 out of the remaining 15). Statics
are particularly highly shared: in 12 of these benchmarks, at
least 95% of their accesses are shared.6 Sharing is also bi-
ased towards statics: although only a geomean of about 2%
of all accesses are static, 22% of all shared accesses are to
statics.

Counting only ‘spot-sharing’ (repeated, recent sharing)
reduces the fraction of shared accesses by varying degrees.
It falls by the most in avrora9 (from 89% to only 6%), fol-
lowed by h29 (49% to 6%) and tradesoap9 (36% to 15%).
Only 4 benchmarks have more than 10% of accesses spot-
shared: sunflow9 (49%), tradebeans9 (35%), trade-

6 We count sharing of statics at class granularity, so two threads accessing
different static fields of the same class would count as sharing.

R
ea

ds
an

d
W

ri
te

s

R
ea

ds

W
ri

te
s

A
rr

ay
s

Sc
al

ar
s

St
at

ic
s

R
ea

ds
an

d
W

ri
te

s

R
ea

ds

W
ri

te
s

A
rr

ay
s

Sc
al

ar
s

St
at

ic
s

Shared / All Spot-Shared / All
avrora9 89 90 83 95 88 99 6 7 1 6 5 97
sunflow9 53 58 0 75 50 100 49 53 0 74 45 97
h29 49 53 5 54 42 99 6 7 1 5 4 27
tradebeans9 48 57 6 37 45 100 35 41 4 26 29 94
tradesoap9 36 45 8 19 43 100 15 20 2 10 14 81
tomcat9 20 23 13 17 18 100 8 11 3 5 8 78
xalan6 19 21 6 19 12 100 14 16 3 11 8 89
eclipse9 17 20 6 15 14 68 1 1 0 1 1 1
eclipse6 13 17 0 18 2 97 0 0 0 0 0 0
hsqldb6 13 14 13 9 13 70 6 7 1 6 4 61
xalan9 13 14 6 12 10 100 7 8 2 6 5 78
lusearch6 8 10 5 11 6 100 2 3 0 3 0 97
pmd9 6 8 0 6 4 99 2 3 0 2 1 50
jython9 3 4 0 0 0 20 0 0 0 0 0 0
lusearch9 3 4 0 2 0 100 3 3 0 2 0 96

Table 2: Percentage of accesses that were shared or spot-shared, across different access types, scalars and arrays and statics. The
figure shows only scalable benchmarks that have at least 0.5% reads and writes shared or spot-shared, using 4 driver threads.

soap9 (15%) and xalan6 (14%); with ‘any sharing’ only
4 had less than 10%. Reads continue to be more likely than
writes to be ‘spot-shared’, and 20% of all spot-shared ac-
cesses are still to statics.

The fractions of ‘alternating modifications’ are very low,
the highest being tradebeans9 (1.2% of all writes), fol-
lowed by h29 (0.7%) and hsqldb6 (0.6%). Only 7 bench-
marks have over 0.2% (tradebeans9, h29, hsqldb6, tom-
cat9, tradesoap9, xalan9 and xalan6). In contrast to
the measures above, scalars are more shared than arrays in
nearly all benchmarks. Static alternating writes vary substan-
tially between benchmarks, from 73% for tradebeans9 to
0.2% for h29. They account for 5% of all alternating writes,
despite the rarity of static writes.

In Figure 5 we further discriminate shared accesses by
sharing pattern, for every benchmark with at least 0.5%
of reads and writes shared. The topmost graph shows all
reads and writes, with the bold black line indicating the
percentage of shared reads and writes. Sharing may take
several forms, each presenting different stress to the VM.
The coloured bars summarise these patterns by increasing
level of challenge. The lowest bar (S1) shows the percentage
of shared accesses to objects that were only read or only
written; the second bar (S2) adds ‘stationary’ objects (to
which there may have been a sequence of writes, then a
read but no further writes7); and the third bar (S3) adds
any objects written by only one thread yet not included in
the previous bars. The fourth bar (S4) adds any accesses

7 Hence, no stationary write appears in the figures.

to objects that were last accessed by the same thread, so
ownership8 does not change. The last bar (S5) accounts
for the remaining, and most challenging, shared accesses;
most intriguingly there are scarcely any. From the other
graphs in the same figure, we see that this kind of write
sharing is present in some benchmarks (chiefly tomcat9 and
pmd9, and for statics tradebeans9), but becomes negligible
when reads are included. We can also see that almost all
shared accesses by sunflow9, the best scaling benchmark
from Figure 1, fall into the first three categories. Nearly all
its shared reads are single-writer; its shared writes are to
write-only arrays but account for little sharing.

Arrays and statics are very likely to be stationary. Many
instance field reads are single-writer, if not stationary, but
writes to single-writer objects are less common for scalars
than arrays. The incidence of read-only statics is at first sur-
prising. However, the VM and DaCapo harness load and ini-
tialise several hundred classes before our Java agent can in-
strument them. Many of these statics will be used as con-
stants and thus appear as ‘read-only’ (S1) whereas a better
classification might be ‘stationary’ (S2). Apart from trade-

beans9 statics and lusearch9 instance field reads, sharing
that changes ownership but is neither stationary nor single
writer (S5) is largely concentrated on arrays.

In summary, we see that the workloads include a rela-
tively small number of shared memory accesses, and only to
memory shared through simple patterns.

8 We treat any access as possession of ownership.

av
ro

ra
9

su
nf

lo
w

9

tr
ad

eb
ea

ns
9

h2
9

tr
ad

es
oa

p9

to
m

ca
t9

xa
la

n6

ec
lip

se
9

hs
ql

db
6

ec
lip

se
6

xa
la

n9

lu
se

ar
ch

6

pm
d9

lu
se

ar
ch

9

jy
th

on
9

All Reads and Writes

0

20

40

60

80

100

S1: Shared Read/Write Only
S2: Additional Shared Stationary
S3: Other Shared, Single−Writer
S4: Other Shared, Same Owner
S5: All Remaining Shared

av
ro

ra
9

su
nf

lo
w

9

tr
ad

eb
ea

ns
9

h2
9

tr
ad

es
oa

p9

to
m

ca
t9

xa
la

n6

ec
lip

se
9

hs
ql

db
6

ec
lip

se
6

xa
la

n9

lu
se

ar
ch

6

pm
d9

lu
se

ar
ch

9

jy
th

on
9

All Reads

0

20

40

60

80

100

av
ro

ra
9

su
nf

lo
w

9

tr
ad

eb
ea

ns
9

h2
9

tr
ad

es
oa

p9

to
m

ca
t9

xa
la

n6

ec
lip

se
9

hs
ql

db
6

ec
lip

se
6

xa
la

n9

lu
se

ar
ch

6

pm
d9

lu
se

ar
ch

9

jy
th

on
9

All Writes

0

20

40

60

80

100

av
ro

ra
9

su
nf

lo
w

9

tr
ad

eb
ea

ns
9

h2
9

tr
ad

es
oa

p9

to
m

ca
t9

xa
la

n6

ec
lip

se
9

hs
ql

db
6

ec
lip

se
6

xa
la

n9

lu
se

ar
ch

6

pm
d9

lu
se

ar
ch

9

jy
th

on
9

Instance Field Reads

0

20

40

60

80

100
av

ro
ra

9

su
nf

lo
w

9

tr
ad

eb
ea

ns
9

h2
9

tr
ad

es
oa

p9

to
m

ca
t9

xa
la

n6

ec
lip

se
9

hs
ql

db
6

ec
lip

se
6

xa
la

n9

lu
se

ar
ch

6

pm
d9

lu
se

ar
ch

9

jy
th

on
9

Instance Field Writes

0

20

40

60

80

100

av
ro

ra
9

su
nf

lo
w

9

tr
ad

eb
ea

ns
9

h2
9

tr
ad

es
oa

p9

to
m

ca
t9

xa
la

n6

ec
lip

se
9

hs
ql

db
6

ec
lip

se
6

xa
la

n9

lu
se

ar
ch

6

pm
d9

lu
se

ar
ch

9

jy
th

on
9

Array Reads

0

20

40

60

80

100

av
ro

ra
9

su
nf

lo
w

9

tr
ad

eb
ea

ns
9

h2
9

tr
ad

es
oa

p9

to
m

ca
t9

xa
la

n6

ec
lip

se
9

hs
ql

db
6

ec
lip

se
6

xa
la

n9

lu
se

ar
ch

6

pm
d9

lu
se

ar
ch

9

jy
th

on
9

Array Writes

0

20

40

60

80

100

av
ro

ra
9

su
nf

lo
w

9

tr
ad

eb
ea

ns
9

h2
9

tr
ad

es
oa

p9

to
m

ca
t9

xa
la

n6

ec
lip

se
9

hs
ql

db
6

ec
lip

se
6

xa
la

n9

lu
se

ar
ch

6

pm
d9

lu
se

ar
ch

9

jy
th

on
9

Static Reads

0

20

40

60

80

100

av
ro

ra
9

su
nf

lo
w

9

tr
ad

eb
ea

ns
9

h2
9

tr
ad

es
oa

p9

to
m

ca
t9

xa
la

n6

ec
lip

se
9

hs
ql

db
6

ec
lip

se
6

xa
la

n9

lu
se

ar
ch

6

pm
d9

lu
se

ar
ch

9

jy
th

on
9

Static Writes

0

20

40

60

80

100

Figure 5: Sharing patterns for different kinds of accesses. The black line denotes accesses of each kind shared in any pattern
(numbers from Table 2). The coloured bars show the percentage of shared access that conform to a particular pattern, such as
‘read-only or write-only’ (S1), ‘stationary but not read-only’ (S2), ‘single-writer but not stationary’ (S3) and so on.

Percentage of SHARED Accesses by Object Age

Object Age (seconds of uninstrumented execution)

P
er

ce
nt

ag
e

of
 S

H
A

R
E

D
 a

cc
es

se
s

[%
]

0 5 10 15

0
20

40
60

80

H
G

F E

D

C
B

A

Percentage of SPOT−SHARED Accesses by Object Age

Object Age (seconds of uninstrumented execution)

P
er

ce
nt

ag
e

of
 S

P
O

T
−

S
H

A
R

E
D

 a
cc

es
se

s
[%

]

0 5 10 15

0
20

40
60

80

G AH E
F D

C

B

B
C
D
F
E
H
A
G

sunflow9
tradebeans9
tradesoap9
xalan6
tomcat9
xalan9
avrora9
hsqldb6

Figure 6: The percentage of accesses up to a given age to objects that are shared or spot-shared. Only benchmarks with at
least 5% of accesses spot-shared are shown. Benchmarks are ordered in the keys by spot-sharing. Unusually, many objects in
avrora9 are shared at an early age but spot-sharing soon decreases.

6.6 Shared Accesses By Age
It is interesting for GC design to ask whether sharing is re-
lated to age. We record the age and locality of accesses, for
both ‘any’ and ‘spot’ sharing. Figure 6 shows the results for
benchmarks with at least 5% of accesses spot-shared. We
observe that the older an object accessed, the higher is the
chance that it is shared. Young accesses are likely to be to
local objects. This is somewhat intuitive, as we would expect
that objects need some time to become shared, but this trend
continues even for very old objects. This trend is exhibited
by all these benchmarks except for avrora9, where the rate
of increase in the fraction of accesses to spot-shared objects
drops sharply after about 10ms, although the ‘any sharing’
rate keeps increasing rapidly. This suggests that in avrora9

single threads often make access to objects that were earlier
shared. However, for the most part, young objects are very
unlikely to be shared, suggesting opportunities for discrimi-
nating their handling.

6.7 Lock Operations
Synchronization operations are detailed in Table 3. The first
column shows the rate of monitor enters (acquisitions of
a monitor). Some single-threaded benchmarks have high
rates (e.g. jython6 13M/s), whereas the best-scaling multi-
threaded benchmark (sunflow9) makes only 1K enters per
second. The next three columns show the percentage of lock
enters on objects that are shared, spot-shared or prone to al-
ternating modifications (which includes locking by alternat-
ing threads). Single-threaded benchmarks may show shared

enters because of threads used by the VM or libraries, such
as the finalizer, reference handler, AWT and Java2D threads.

The next three columns (5-7) show the maximum age of
most objects locked, i.e. where 95% of locks were to objects
of that age or younger. The age is given in seconds of unin-
strumented execution (shown in the last column). In many
but not all benchmarks, this age is large or even close to the
total execution time, suggesting that long-lived objects are
subject to locking throughout their lifetime. Unsurprisingly,
the number of locks acquired on spot-shared objects seems
to have a substantial effect on scalability. The benchmarks
that scale best on AMD, sunflow9 and tomcat9, use fewer
monitor enters, especially fewer spot-shared enters, than the
worst scaling ones, h29 and tradebeans9 (Figure 1(a)).

6.8 Volatile Accesses
Volatile fields serve as a means of communication among
threads, but the benchmarks make comparatively few ac-
cesses to volatiles (5% in jython9; 1% in antlr6, tom-
cat9, hsqldb6, fop9, and jython9; less in others). How-
ever, the rates of volatile accesses are still reasonably high
(Figure 7). The highest rate is with jython9 (26M/s), the
median is 664K/s and the lowest rate is with sunflow9, the
most scalable benchmark (4.6K/s only).

Many static writes are volatile: in 12 of the 25 bench-
marks, more than half are to volatile fields. Less than a few
percent of other types of accesses (static reads, non-static
reads, non-static writes) are to volatiles. Because static fields
are (potentially) accessible to all threads, synchronisation
is necessary and volatile provides a convenient mecha-

M
on

. E
nt

er
s

Sh
ar

ed
Sp

ot
-s

ha
re

d
A

lte
rn

at
in

g
A

ll
En

te
rs

Sh
ar

ed

Sp
ot

-s
ha

re
d

N
at

iv
e E

xe
c.

Rate [K/s] % of Enters Max Age of Most [s] Time [s]
antlr6 8912 0 0 0 0.0 1.7 1.7 1.8
avrora9 972 66 65 57 6.9 7.1 7.0 7.4
batik9 538 1 0 0 0.2 2.8 1.2 3.4
bloat6 7699 0 0 0 0.0 0.7 0.9 11.0
chart6 6986 0 0 0 0.0 4.0 4.2 4.8
eclipse6 5918 3 0 0 0.0 11.6 11.7 26.1
eclipse9 1517 27 4 1 22.7 28.6 15.6 39.8
fop6 782 1 0 0 0.2 0.6 0.6 1.0
fop9 1534 0 0 0 0.9 0.9 0.8 1.4
h29 4991 92 19 1 7.2 7.2 7.3 20.4
hsqldb6 2498 12 7 3 0.8 1.6 1.5 3.2
jython6 12680 0 0 0 11.6 0.9 1.3 13.9
jython9 6575 14 0 0 12.4 16.3 1.5 16.9
luindex6 923 1 0 0 1.6 2.3 2.2 2.3
luindex9 264 3 1 0 0.8 1.1 1.1 1.2
lusearch6 4759 37 0 0 2.3 2.5 0.1 3.0
lusearch9 2514 0 0 0 0.1 2.3 2.1 2.5
pmd6 23813 0 0 0 0.0 4.5 4.8 5.5
pmd9 599 62 27 7 2.1 2.1 2.2 3.3
sunflow9 1 46 15 16 3.4 4.1 4.0 4.7
tomcat9 2635 16 6 3 7.1 9.9 9.5 10.9
tradebeans9 7941 99 44 6 8.5 8.5 8.4 8.9
tradesoap9 11006 23 9 3 11.4 15.2 15.0 17.5
xalan6 59421 22 15 3 5.1 6.3 6.2 6.8
xalan9 31954 11 5 2 3.4 6.1 6.0 6.6

Table 3: Monitor enter operations (locks). The table shows the rate of enters, what percentage of these were shared, spot-shared
and alternating, and the maximum ages of most (minimum age for which 95% of locks were to objects of that age or younger).
E.g. sunflow9 only acquires about 1,000 monitors per second, 46% of which protected shared objects; its shared objects tend
to be older than its unshared ones. Although pmd6 is multi-threaded and has a high rate of entries, nearly all are to local objects.

nism, often used for e.g. lazy initialisation by a single thread.
Static fields are commonly used for constants. The evidence
from the statistics for static reads and writes supports this
hypothesis (Figure 5): we see that the overwhelming ma-
jority of static reads are to (at worst) single-writer objects
and scarcely any static writes change ownership (except for
tradebeans9).

As volatiles are used for similar tasks to locks, we com-
pare the number of volatile accesses and monitor enters. Dif-
ferent benchmarks favour different mechanisms. Although
on (geometric) average, enter is used 6× (median 4×) more
frequently than volatile access, some benchmarks use more
volatile accesses than enters — jython9 (4×), sunflow9

(4×), hsqldb6 (1.2×) — and some use about the same
(pmd9, tomcat9, fop9). Volatile access seems as important
as locking for optimisation.

We investigated which volatile fields are accessed most
often, i.e. account for 95% of volatile accesses in a bench-
mark. Typically, there were few and these were used by only

a few call sites. Over all the DaCapo benchmarks, just 102
fields from 59 classes and 35 packages cover 95% of the
volatile accesses of each benchmark. Most of these classes
are from the Java I/O, references, reflection, concurrent (in-
cluding atomics), and collection class libraries (Table 4).
Some are from benchmark-specific libraries.

10 out of 25 benchmarks have larger read/write ratios
for volatiles than for non-volatiles (the extreme is hsqldb6:
339× vs. 10×).

6.9 Wait and Notify
Interestingly, the wait and notify methods are rarely used.
Of all the benchmarks, 15 make fewer than 100 of these calls
(less than 13 per second) — rates are shown in Figure 7. Six
benchmarks issue fewer than 100 calls per second (trade-
soap9, eclipse6, hsqldb6, lusearch6, xalan6 and h29).
The remaining ones are lusearch9 (158/s), xalan9 (361/s),
eclipse9 (17K/s) and avrora9 (61K/s). wait is invoked
on only 29 classes in the whole suite. The hottest class is

Package (# of classes) Comment, Selected Classes
java.io (6) *Stream, RandomAccessFile

java.lang (6) Class, reflect.Constructor, reflect.Method, ref.ReferenceQueue, System, Thread
java.math (1) BigDecimal

java.net (1) URI
java.nio (2) I/O, locale

java.util.concurrent.atomic (4) Atomic Boolean, Integer, Long, Reference
java.util.concurrent.locks (2) AbstractQueueSynchronizer

java.util.concurrent (4) Concurrent HashMap, LinkedQueue
java.util.zip (3) ZipFile, *InputStream

java.util (7) HashMap, HashTable, AbstractMap, logging.Logger, regex.Pattern, locale . . .
sun (7) Streams, sockets, fonts, . . .

org.apache (6) Benchmark libraries (batik, catalina, fop, lucene, tomcat). I/O, properties, . . .
org.eclipse.core.internal (3) OrderedLock, ResourceInfo, ElementTree

org.h2 (3) Database, Session, MemoryUtils
org.hsqldb (2) jdbcStatement, Session

org.osgi (1) ServiceTracker
org.python.core (1) PyUnicode

Table 4: Classes with volatile fields accessed most in the DaCapo benchmarks. Standard Java libraries are in the upper part,
benchmark libraries in the lower part.

RippleSynchronizer in avrora9, which is the target of
about 6M calls; it implements global simulation time for a
parallel discrete event simulator. Simulator threads use it to
wait for data from other threads that are not keeping up (and
notify the synchroniser of their progress). The next hottest
class is ReadManager in eclipse9 (about 33K calls), which
synchronises worker threads that read files in parallel. Apart
from avrora9 and eclipse9, the number of these calls is
small enough that performance should not be an issue.

6.10 Concurrent APIs
The java.util.concurrent APIs are widely used in
jython9 (over 175M total or 7.4M/s); five other bench-
marks have between 100–349K calls/s (h29, tradebeans9,
hsqldb6, tomcat9); another five do 10–16K/s (luindex6,
antlr6, eclipse9, pmd9, xalan6). The rates are shown in
Figure 7. The remaining benchmarks issue fewer than 10K
calls per second. avrora9 and sunflow9 have the lowest
number of calls (less than 200) of all benchmarks. Only
jython9, pmd9, tomcat9, tradebeans9 and tradesoap9

call the concurrency APIs directly; other benchmarks do so
only through other Java libraries. Overall, the suites used
atomics (integer, boolean, long, reference, reference field
updater), concurrent hash maps and linked queues, copy-on-
write sets and array lists, linked blocking queues, re-entrant
read-write locks, semaphores, thread pools and future tasks.

In summary, what can we learn from DaCapo’s usage
of different concurrency mechanisms, such as monitor en-
ters, volatile accesses, concurrent API and wait/notify calls?
Several benchmarks are significant outliers. jython9 makes
heavy use of all these mechanisms except wait/notify (par-
ticularly concurrent hash maps, which in turn use volatiles),
even though it is essentially single-threaded (Table 1). The

behaviour of some benchmarks has changed significantly be-
tween releases. xalan9 has by far the highest monitor enter
rate of all benchmarks and also has a very high volatile ac-
cess rate; xalan6 also has very high rates but lower than
xalan9. pmd6 uses locks heavily but does not use volatiles
that much. jython6 behaves very differently to jython9,
with a much lower rate of concurrent calls and volatiles, but
more monitor enters. avrora9 makes much use of wait/no-
tify calls (and hence monitors), but has a very low rate of
concurrent calls and quite a low rate of volatile accesses.
sunflow9 stands out in that it has the lowest enters rate
and makes limited use of the other mechanisms compared
to other benchmarks; it is the most scalable benchmark (Fig-
ure 1(a)) in the suite.

6.11 Shared-Used and Shared-Reachable Objects
VMs have an interest in which objects are, or could poten-
tially be, accessed by more than one thread. There are a num-
ber of advantages to segregating objects into thread-local
heaplets that can be collected in isolation, without stopping
other threads. This approach accords well with transactional
workloads where there is almost no trace left after a transac-
tion commits. It makes it easier to keep thread-local objects
on the local node in a NUMA system, helping to address the
problems of the ‘allocation wall’ [26] or the ‘memory wall’.9

It can also reduce coherency traffic due to false sharing.
Static or dynamic analyses (or a combination of both)

can be used to identify ‘shared’ objects, trading precision for
cost of analysis and object management. The benefits depend
on precision. An escape analysis may determine an object
to be ‘shared’ if it is potentially accessible by more than

9 www.azulsystems.com/presentations/

qconsf-state-of-the-art-in-java-gc

an
tlr

6

av
ro

ra
9

ba
tik

9

bl
oa

t6

ch
ar

t6

ec
lip

se
6

ec
lip

se
9

fo
p6

fo
p9 h2

9

hs
ql

db
6

jy
th

on
6

jy
th

on
9

lu
in

de
x6

lu
in

de
x9

lu
se

ar
ch

6

lu
se

ar
ch

9

pm
d6

pm
d9

su
nf

lo
w

9

to
m

ca
t9

tr
ad

eb
ea

ns
9

tr
ad

es
oa

p9

xa
la

n6

xa
la

n9

Monitor Entries Volatile Accesses Concurrent API Calls Wait/Notify Calls

Rates of Volatile Accesses, Concurrent API Calls, Wait/Notify Calls [1/s]

1e+00

1e+02

1e+04

1e+06

Figure 7: Rates of monitor entries, volatile accesses, concurrent API calls and wait+notify calls (operations per second).

one thread [21]. Alternatively, in languages like ML, only
objects annotated as mutable need be considered ‘shared’
as immutable objects can be freely copied [9, 10]. Static
analyses overestimate the number of objects actually shared.
Most are conservative in the face of (or ignore) dynamic
class loading; Jones & King [15] use an optimistic, and
hence more precise, analysis that falls back at run-time to
more conservative assumptions should a dynamically loaded
class invalidate parts of a prior analysis.

Runtime analysis delivers more precise results but re-
quires read or write barriers to detect escape [17]. The most
conservative approach is to have a write barrier mark as
‘shared’ the entire transitive closure of an object at the point
it becomes reachable from another ‘shared’ object [11] —
we call these objects shared-reachable. Precise techniques
identify as shared-used only those objects that are actually
accessed by more than one thread, but permit references
from shared to local objects. Here, a read barrier is needed to
detect sharing. Whilst read barriers are generally considered
expensive [25], Haskell combines the barrier cheaply with
its closure entry mechanism [19].

We compared the incidence of shared-used and shared-
reachable objects in Jikes RVM. Note that even benchmarks
with a single user thread also employ a finaliser thread and
so will report a non-zero number of objects that are shared-
reachable, e.g. from statics. Shared-use was detected by our

probes on the fly. To compute shared-reachability, we ran a
GC after every 10MB of allocation to give a lower bound of
the set of shared-reachable objects.

We measured the proportion of all objects allocated by
a benchmark that became shared-used or shared-reachable
(Figure 8), by number and by volume. Reachability is an
even poorer approximation than we expected of how many
objects will be accessed by more than one thread. Although
only a negligible fraction of space is actually shared in these
benchmarks (7% in avrora9, but below 1% in others, and
we know that in avrora9 about 70% of shared accesses are
made without ownership changes, see Figure 5), the shared-
reachable volume is large: over 10% in 7 of 14 benchmarks,
over 20% in 4 and as much as 61% in hsqldb6. In 11 of
the 14 benchmarks, the fraction of shared-reachable objects
is larger by volume than by number, so we can speculate
that shared-reachable objects tend to be the bigger ones.
Surprisingly, this is not true for shared-used objects: 5 of the
14 benchmarks have a higher fraction of shared-used objects
by number than by volume.

We also compared the fraction of reads and writes to ob-
jects that were shared-used or shared-reachable (Figure 9).
There are many more shared-reachable objects than are ac-
tually shared; the difference is highest with xalan9 (19 per-
centage points for reads and 17 for writes). We tracked which
objects were reachable from static fields at every GC. hsql-

an
tlr

6

av
ro

ra
9

bl
oa

t6

ec
lip

se
6

fo
p6

hs
ql

db
6

jy
th

on
6

lu
in

de
x6

lu
in

de
x9

lu
se

ar
ch

6

lu
se

ar
ch

9

pm
d6

xa
la

n6

xa
la

n9

% Shared−Used (Number)
% Shared−Reachable (Number)
% Shared−Used in (Size)
% Shared−Reachable (Size)

Percentage of Shared Objects of All Allocated

O
bj

ec
ts

 U
se

d
an

d
R

ea
ch

ab
le

 b
y

M
ul

tip
le

 T
hr

ea
ds

 [%
]

0

10

20

30

40

50

60

Figure 8: Percentage of all objects ever used by (shared-used) or reachable from multiple threads (shared-reachable).

an
tlr

6

av
ro

ra
9

bl
oa

t6

ec
lip

se
6

fo
p6

hs
ql

db
6

jy
th

on
6

lu
in

de
x6

lu
in

de
x9

lu
se

ar
ch

6

lu
se

ar
ch

9

pm
d6

xa
la

n6

xa
la

n9

% Shared−Used Reads
% Shared−Reachable Reads
% Shared−Used Writes
% Shared−Reachable Writes

Percentage of Shared Reads and Shared Writes

A
cc

es
se

s
to

 S
ha

re
d

O
bj

ec
ts

 [%
]

0

5

10

15

20

25

30

Figure 9: Percentage of reads from and writes to objects that were ever used by multiple threads (shared-used) or objects that
were ever potentially reachable from multiple threads (shared-reachable).

db6 has the largest number and volume of shared-reachable
objects. It turns out that 97% of objects that were shared-
reachable were also reachable from at least one static field
at some point. Only five types accounted for a significant
fraction (more than 95%) of these objects.

6.12 Unused Objects
A noticeable number of ‘write-only’ objects are initialised
by the benchmarks but never read nor synchronised, some
read-only objects are never initialised nor synchronised,
some ‘locked-only’ objects are used only for synchronisa-
tion — a common metaphor — and some objects are nei-
ther read, written nor synchronised. Our tool only captures
accesses from Java, but we manually verified selected allo-

cation sites in the benchmarks and found that surprisingly
many of the objects are not used by native code, either.

Figure 10 shows a particularly large proportion of write-
only objects in jython6, jython9 and chart6. In jython,
write-only objects are mostly backing arrays of string buffers
allocated eagerly by the lexical analyser but not used later.
These buffers are created from a single-character string, but
the class libraries pre-allocate a 17-char backing array for
each. In chart6, the vast majority of write-only objects are
backing arrays for lines of text input: string comparisons on
two lines ignore the arrays if their lengths differ. chart6 also
creates a significant number of notification objects, but fre-
quently there are no listeners to be notified so these objects
are never read. pmd6 pre-initialises many objects to repre-

an
tlr

6

av
ro

ra
9

ba
tik

9

bl
oa

t6

ch
ar

t6

ec
lip

se
6

ec
lip

se
9

fo
p6

fo
p9 h2

9

hs
ql

db
6

jy
th

on
6

jy
th

on
9

lu
in

de
x6

lu
in

de
x9

lu
se

ar
ch

6

lu
se

ar
ch

9

pm
d6

pm
d9

su
nf

lo
w

9

to
m

ca
t9

tr
ad

eb
ea

ns
9

tr
ad

es
oa

p9

xa
la

n6

xa
la

n9

Unused Objects
Write−only Objects
Read−only Objects
Locked−only Objects

Unused Objects by Volume
P

er
ce

nt
ag

e
of

 O
bj

ec
ts

 in
 V

ol
um

e
[%

]

0

10

20

30

40

50

60

Figure 10: Volume of objects that are only read, only written, only synchronized or unused by Java. While some of these objects
are read or written by native code, it turns out that many, particularly write-only, objects are not read by native code either. In
chart6 write-only objects are mostly strings representing lines of input that are skipped during processing. In jython6 they
are mostly compiler objects eagerly allocated and initialised but not needed later.

sent the contexts of XPath predicates, but these are often not
needed and hence write-only. In general, write-only objects
arise through eager allocation and/or preparation of data that
is not always needed for later computation.

Objects are often read-only because only their default
value is needed. chart6 also creates string prefixes as part
of a decimal number formatter but often no characters are
added so the prefix’s backing array is never written. Eager
allocation also leads to objects not being used subsequently.
For example, the python compiler in jython pre-allocates
hashmaps for metadata that are not always needed. Many big
integers representing zero produce unused single-element
int arrays. In jython, the DaCapo results-validation reads
a long text file, which includes many empty lines leading to
the creation of many zero-length byte arrays.

We also found instances of objects that were read-only
or unused in Java, but were written or read from the native
code. For instance, I/O buffers used when reading a file ap-
peared ‘read-only’. Buffers used for class loading appeared
‘unused’ as they were only read by the VM’s native code.

7. Conclusion
We provide a number of platform independent metrics of
concurrency, shared memory use and scalability of Java ap-
plications. Based on tracing, these metrics allow black-box
studies of large applications, giving the developers an under-
standing of what applications really do. Our approach takes
into account application libraries and standard Java libraries,
but abstracts from any hardware platform or VM implemen-

tation. We believe that it will help application developers
gain insights into their programs by understanding scalabil-
ity bottlenecks independent of the platform used. Similarly
VM developers need confidence that the benchmarks they
use to measure new optimisations do stress the optimisation
they are trying to test. For this they need not only good ap-
plication benchmarks but also to understand their behaviour.
For example, to test locking optimisations, they need appli-
cations which use locks in a non-trivial manner. We provide
metrics to examine how the programs use locking and other
concurrency mechanisms such as volatile accesses, synchro-
nisation through atomic memory operations, or frequent ac-
cesses to shared memory by different threads.

We implement our metrics in two tools, one which uses
bytecode instrumentation and one which modifies a Java
VM. We provide an observational study of what the Da-
Capo’09 and DaCapo’06 benchmarks really do in terms of
concurrency and shared memory use. We believe our results
will help developers to choose the right benchmarks for their
purposes. We measure how many threads in these bench-
marks actually contribute significantly to the work of the
benchmark. While many benchmarks are multi-threaded, we
find that their threads do not communicate much or commu-
nicate only in limited ways. Moreover, communication often
does not change predictably as we vary the number of cores
deployed. Although limited synchronisation is good for scal-
ability, these limitations have to be kept in mind when bench-
marks are used as test applications by VM implementors at-
tempting to optimise the concurrency support they provide.

We hope that our findings for large Java applications
will inform VM development, particularly memory manage-
ment and concurrent GCs for many-core systems with shared
memory. The DaCapo benchmarks do not scale beyond 20 or
so cores on the platforms we have looked at and some even
degrade. There are more reads than writes, and many more
static reads than static writes. Reads tend to be to older ob-
jects than writes. Young objects do not dominate memory
accesses. Shared accesses are dominated by reads. Array ac-
cesses tend to be more shared than scalar ones, but scalars
tend to have more frequent changes of ownership. Static ac-
cesses are massively shared. Volatile accesses are quite rare
compared to all accesses, but only somewhat less frequent
than locks. Nearly half of all static accesses tend however
to be volatile. The chance that an access is shared increases
with age. There are many accesses to objects reachable from
multiple threads, but few are accessed by multiple threads:
reachability is a gross over-estimate of sharing. A non-trivial
volume of memory is reachable from statics, which imme-
diately contributes to this over-estimate in nearly single-
threaded workloads. Furthermore, a non-trivial volume of
memory is never used.

Finally, we thank Doug Lea, Eliot Moss, Andreas Sewe,
Pavel Parizek, Thomas Shilling and the anonymous re-
viewers for their thoughtful comments and suggestions. We
are grateful for the support of the EPSRC through grant
EP/H026975/1 and NSF 1048398, 1019518, 1019607.

References
[1] ASM project. http://asm.ow2.org, 2011.

[2] BTrace. http://kenai.com/projects/btrace, 2011.

[3] B. Alpern, C.R. Attanasio et al. Implementing Jalapeño in
Java. In Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), 1999.

[4] W. Binder, J. Hulaas and P. Moret. Reengineering standard
Java runtime systems through dynamic bytecode instrumen-
tation. In Source Code Analysis and Manipulation (SCAM),
2007.

[5] S.M. Blackburn and K.S. McKinley. Ulterior reference count-
ing: Fast garbage collection without a long wait. In Object-
Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), 2003.

[6] S.M. Blackburn, R. Garner et al. The DaCapo benchmarks:
Java benchmarking development and analysis. In Object-
Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), 2006.

[7] A. Burns and A.J. WellingS. Real-Time Systems and Pro-
gramming Languages: ADA 95, Real-Time Java and Real-
Time POSIX. Addison-Wesley, 3rd edition, 2001.

[8] K.-Y. Chen, J.M. Chang, and T.-W. Hou. Multithreading in
Java: Performance and scalability on multicore systems. IEEE
Transactions on Computers, 60(11), 2011.

[9] D. Doligez and G. Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In Symposium on Prin-
ciples of Programming Languages (POPL), 1994.

[10] D. Doligez and X. Leroy. A concurrent generational garbage
collector for a multi-threaded implementation of ML. In Sym-
posium on Principles of Programming Languages (POPL),
1993.

[11] T. Domani, E.K. Kolodner et al. Thread-local heaps for
Java. In International Symposium on Memory Management
(ISMM), 2002.

[12] B. Dufour, K. Driesen et al. Dynamic metrics for Java. In
Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), 2003.

[13] H. Esmaeilzadeh, T. Cao et al. Looking back on the language
and hardware revolutions: Measured power, performance and
scaling. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2011.

[14] L. Gidra, G. Thomas et al. Assessing the scalability of garbage
collectors on many cores. In Programming Languages and
Operating Systems (PLOS), 2011.

[15] R.E. Jones and A.C. King. A fast analysis for thread-local
garbage collection with dynamic class loading. In Source
Code Analysis and Manipulation (SCAM), 2005.

[16] R.E. Jones and C. Ryder. A study of Java object demograph-
ics. In International Symposium on Memory Management
(ISMM), 2008.

[17] R.E. Jones, A.L. Hosking, and J.E.B. Moss. The Garbage
Collection Handbook: The Art of Automatic Memory Manage-
ment. Chapman & Hall, 2011.

[18] T. Liu and E.D. Berger. Sheriff: precise detection and auto-
matic mitigation of false sharing. In Object Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA),
2011.

[19] S. Marlow and S.L. Peyton Jones. Multicore garbage collec-
tion with local heaps. In International Symposium on Memory
Management (ISMM), 2011.

[20] K. Shiv, K. Chow et al. SPEC jvm2008 performance charac-
terization. In SPEC Benchmark Workshop on Computer Per-
formance Evaluation and Benchmarking, 2009.

[21] B. Steensgaard. Thread-specific heaps for multi-threaded pro-
grams. In International Symposium on Memory Management
(ISMM), 2000.

[22] L. Valiant. A bridging model for parallel computation. CACM,
33(8):103–111, 1990.

[23] P.H. Welch and J.B. Pedersen. Santa Claus: Formal analysis
of a process-oriented solution. ACM Trans. Comput. Syst., 32
(4), 2010.

[24] X. Yang, S.M. Blackburn et al. Why nothing matters: the
impact of zeroing. In Object Oriented Programming Systems
Languages and applications (OOPSLA), 2011.

[25] X. Yang, S.M. Blackburn et al. Barriers reconsidered,
friendlier still! In International Symposium on Memory Man-
agement (ISMM), 2012.

[26] Y. Zhao, J. Shi et al. Allocation wall: A limiting factor
of Java applications on emerging multi-core platforms. In
Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), 2009.

