
Eval Begone!
Semi-Automated Removal of Eval from JavaScript Programs

Fadi Meawad Gregor Richards Floréal Morandat Jan Vitek
Purdue University

Abstract
Eval endows JavaScript developers with great power. It allows
developers and end-users, by turning text into executable
code, to seamlessly extend and customize the behavior of
deployed applications as they are running. With great power
comes great responsibility, though not in our experience. In
previous work we demonstrated through a large corpus study
that programmers wield that power in rather irresponsible and
arbitrary ways. We showed that most calls to eval fall into a
small number of very predictable patterns. We argued that
those patterns could easily be recognized by an automated
algorithm and that they could almost always be replaced with
safer JavaScript idioms. In this paper we set out to validate
our claim by designing and implementing a tool, which we
call Evalorizer, that can assist programmers in getting rid of
their unneeded evals. We use the tool to remove eval from
a real-world website and validated our approach over logs
taken from the top 100 websites with a success rate over 97%
under an open world assumption.

Categories and Subject Descriptors D.2.3 [Software Engi-
neering]: Coding Tools and Techniques—Program editors;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms Languages

Keywords Dynamic Languages, JavaScript, Reflection, Dy-
namic Analysis

1. Introduction
JavaScript’s eval function gives programmers the ability
to run JavaScript code generated at runtime. This gives
programmers extraordinary flexibility, but at the cost of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

understandability, efficiency and safety. As strings passed to
eval may come from any source, including computation, user
input or another website, and as eval is capable of performing
any task1, it can serve as a “black hole” both for analysis and
for maintenance; to understand its behavior, one must know
every potential argument. Consider the following JavaScript
expression:

eval (x)

Depending on the value bound to variable x, the state of any
heap-allocated mutable value and the bindings of local varia-
bles in scope can be modified as a side effect of evaluating
this statement. While some languages can enforce some mod-
icum of data abstraction, JavaScript has very little in the way
of encapsulation mechanisms. The impact of an eval can span
over the entire heap.

The existence of eval is a quandary for those wishing to
perform static analyses on JavaScript code or enforce any
kind of semantic invariants. With an unknown string, eval has
no locality guarantees, no time or memory bounds, not even
a termination guarantee. Since the strings frequently come
from outside sources and are as such completely unknown,
static analyses are forced to assume the worst, losing all
potential gains from the analysis, and dynamic analyses are
at best forced to reevaluate every time an eval is encountered.
It is common for researchers to simply ignore it [1, 2, 12, 23],
claim it is very rare [9], assume its use is innocuous [10],
or acknowledge its problems but simply produce a warning
when it is used [13], resulting in unsound or even unsafe
results. In security literature, in particular, eval is viewed
as a serious threat [22], and it is frequently forbidden [16],
filtered [6] or wrapped [6], but all of these solutions imply a
flexibility or speed penalty.

Most dynamic languages have an eval function or similar
feature, and in many it is considered harmful, though not all.
The R programming language is an example where eval is a
key mechanism for language extensibility [17]. In previous
work [21], we showed that eval is ubiquitous in the largest and
most popular websites on the Internet; we speculated that over

1 JavaScript provides several other such functions, such as setTimeout and
Function, but we focus on eval for much of our discussion.

75% of evals could be replaced by other mechanisms within
JavaScript. In the present paper, we set out to validate that
claim and end up demonstrating that over 95% of the evals
invocations in real websites can be replaced with less general
mechanisms with very little work on the programmer’s part.
Our working hypothesis is that no more than 5% of all evals
are actually needed.

Examining the most common use cases of eval, we observe
that programmers decide to use eval for one of the following
reasons: they use eval to parse JSON and malformed-JSON.
For parsing JSON, until recently some browsers did not
have native JSON parsers, but this is no longer the case.
Current native JSON parsers does not handle malformed-
JSON. Others use eval to access or modify properties based
on user input. It might require some small parsing to handle
the input without using eval. And the last category of users is
the one executing code coming from third party with no prior
knowledge of its shape. Most modern browsers have native
JSON parsers that is usually faster than eval for a JSON string,
and it only accepts JSON strings, thus improving the security.
Parsing user input to extract the correct expression might be
hard to program manually, but once eval is used we loose the
possibility of using static analysis as well as suffer the risk
of code injection. When running third party code, we have
noticed that it is usually the same or at least has the same
shape. But the user would not be able to figure out what kind
of strings are being executed and how to write a parser for
them.

We see three possible roads to an eval-free Internet: prohi-
bition, prevention and migration. Prohibition is conceptually
the simplest. If calls to eval are simply disallowed, the prob-
lem is no more, but this comes at a cost in expressive power.
Eval occasionally is the only practical way to achieve a certain
degree of customizability in the behavior of a website, so for-
bidding it would reduce the expressive power of JavaScript. In
other cases, eval is a way to delay design and implementation
decisions, thus allowing developers to deploy applications
faster. Again, losing that would decrease the usefulness of the
language for rapid development. The second path is to pre-
vent eval by proving, ahead of time, that they are not needed.
This can be done through static program analysis techniques
which construct approximate models of the program and can
determine which strings flow into a particular eval call site.
Indeed, there are many constant and quasi-constant strings
that are passed in as argument to eval. A static analysis could
be coupled with a compiler optimization that compiles the
evals to equivalent code. This could be as simple as removing
the quotes around a piece of text and splicing in the program
where the eval used to be. Unfortunately there are inherent
limits to static analysis approaches; they are unable to guess,
for instance, what a user will type. In our experience, over
40% of strings passed to eval are, at least in part, generated
by components outside of JavaScript code, such as the user,
browser or server. We also observed that many of the most

gnarly evals take their argument from outside the JavaScript
program. This leaves migration as the third path. This is a
path where we attempt wean users off their addiction to eval
by showing them how to rewrite their code without it. We
recognize that eval can be useful either because the program
actually requires the flexibility that it brings to the table or
because it is a handy crutch during an early phase of the
program’s life, but argue that in most cases, there is a point
where the same functionality can be achieved without it.

We propose a simple dynamic approach to get rid of eval.
The technique we present in this paper detects how eval is
used through dynamic analysis of calls to eval. It categorizes
the strings passed as argument to each call site of eval and
proposes generic replacements that do not involve calls to
eval. We realize our proposal in a tool which we name the
Evalorizer. This tool aids in the evolution of eval-utilizing
code to eval-free code by presenting replacements that fit the
real use of each call site. This allows programmers to use
eval in the development phase, when its flexibility may be
most beneficial, then to gradually remove it in preference
of simpler, safer and more readable solutions. We use a
grammar inference algorithm to determine the used patterns
of any given eval call site as a restricted subset of JavaScript’s
grammar, then generate succinct code that will handle all
the same patterns, but with greater constraint. Additionally
to aiding developers in removing evals, Evalorizer is also
capable of dynamic eval removal. This technique can be used
for verification, for measurement, or to perform analyses
on otherwise hostile programs without intervention of the
original developers. Though we focus on JavaScript, eval is
certainly not unique to that language. Our implementation
is specific to JavaScript, but our techniques are not, and are
applicable to any language which provides a function similar
to eval as well as other, safer reflective capabilities.

We evaluate the benefits of our approach by successfully
migrating five real world websites. Furthermore, we use data
obtained from the 100 top websites and evaluate the quality
of our inference algorithm. We also measure the runtime
performance impact of our technique.

Our tools and data are freely available at:

http://sss.cs.purdue.edu/projects/dynjs

2. Use case
We motivate Evalorizer with a typical use case. Assume that
a web programmer, finding that the existing calls to eval on
CNN.com inhibit maintainability, wants to determine if some
of those calls can be removed. The programmer does not have
intimate knowledge of all of the components of this site. The
JavaScript frontend maybe easily understood, but the part
that communicates with server components and third-party
code is obscure. Because the argument strings of eval are
unconstrained and may have come from these sources, the
programmer does not know what these calls are doing or even
if they are actually useful. Some of these calls may be needed,

http://sss.cs.purdue.edu/projects/dynjs
CNN.com

but it isn’t clear from looking at the code. CNN.com also
uses code from a third party domain ATDMT.com that our
developer does not trust entirely. To integrate both websites,
she was instructed by ATDMT.com’s representative to eval
the code they are providing, but a safer and more predictable
mechanism would be preferable.

Once launched, Evalorizer acts as an HTTP proxy, inter-
posing on the traffic between the browser and the server.
There is no specific requirement on where it has to be run,
as it does not integrate into the server software, so the devel-
oper’s own machine is suitable. The programmer may use any
web browser, so long as it is configured to proxy all relevant
traffic through Evalorizer. Fig. 1 illustrates this setup, as well
as the communication between the different components of
the system over time for a sample interaction.

Browsing the website is the only task left to the program-
mer. Ideally she should use as much of the site as is practical,
to exercise every potential eval in the code; the more pages
she browses and the more evals are triggered, the more accu-
rate the results will be. Once the browsing session is complete,
Evalorizer returns a log of all evals encountered in the code.
For each call site, the user is provided with the arguments,
the file name where it was located, and the absolute location
within this file.

Our user visits the CNN.com homepage. The request is
sent to the proxy (→ 1) that in turn forwards the request to
the CNN.com server (→ 2). The server returns the homepage
to the proxy (→ 3). The homepage had, in our example, two
eval call sites. One was in the HTML page in an embedded
script tag, and the other was from an external JavaScript file.
The call sites are:

filename line eval call site

1 index.html 105 t = eval(response);
2 lib1.js 1402 p = eval(”window.”+ x);

Inspecting the eval call sites or even its surrounding code
does not provide any intuition on what eval is performing
and what could be a replacement code. In the first call site, it
just evaluates the variable response, that is obtained from an
asynchronous call back. Performing post flow analysis for the
left-hand-side t may give some intuition on how the return
value of eval is used, but its side effects (including changes
to the lexical environment) will remain obscure. We contend
that the second eval call site, despite that part of the argument
is a string literal, is exactly as obscure as the first one.

The proxy logs the call site information for future use,
called the static log. Then it rewrites the eval call sites by
invoking a function that will send the eval argument to the
proxy, then call eval. The rewriting for our example is:

t = (ev1=(response),logEval(ev1, 1),eval(ev1));
p = (ev2 = (”window.” + x),logEval(ev2, 2),eval(ev2));

logEval is a function that sends an asynchronous message to
the proxy with the argument information; the first parameter

Browser CNN.com ServerEvalorizer Proxy

Evalorizer
Patcher

10

11

1 2

3

4

6

7

9

8

S
es

si
on

 1
S

es
si

on
 2

5

On the first session, the browser requests a page from the proxy
(→ 1), that in turn forwards the request to the CNN.com server
(→ 2). After the server sends the requested page to the proxy (→ 3),
the later instruments the page and sends it to the browser (→ 4).
When an eval is invoked, the browser sends a message to the proxy
(→ 5, 6, 7). After the first session is complete, the patcher will
acquire the logs form the proxy (→ 8), and creates a patch that can
be used to update the server (→ 9). After patching, the browser
communicates with the server directly (→ 10, 11).

Figure 1. A typical execution of Evalorizer.

is the eval argument, and the second is an identifier that
maps the invocation to the call site. The proxy then sends the
updated files to the browser (→ 4).

While the page was loading on the browser, the sec-
ond eval has been invoked twice, with the arguments
window.width and window.height. With some interaction with
the page, for example by expanding a collapsible <div>, the
first call site is invoked with the argument

({”type” : ”news”,
”value” : [{”order” : 2, ”name” : ”news1”,

”text”:”This event has happened”},]})

For each invocation, the logEval (→ 5, 6, 7) function is called,
and therefore the proxy now has a log of the invocations,
called the dynamic log. She should attempt to visit every part
of the page as well as visiting as many possible pages. The
programmer can inspect the proxy logs at any time, and it
will give her the number of invocations for each eval call site
if any. Five invocations is usually sufficient to discover the
exact functionality of the call site.

After this exercise is complete, the user will run the second
component of our tool, the patcher. It uses both the static and
dynamic logs (→ 8), and generates a patching script. The
script depends on the policy used, whether you have full

CNN.com
ATDMT.com
ATDMT.com
CNN.com
CNN.com
CNN.com

confidence of the replacement, or not, and whether you want
to inspect possible hacking attempts. A simplified version
of the generated script for both call sites is (line numbers
omitted):

--- index.html
-t = eval(response);
+t = JSON.parse(response.substring(1,

response.length-1));
--- lib1.js
-p = eval("window." + x);
+p = window[x];

The programmer now should apply the patch to his original
code (→ 9), remove the proxy configuration (→ 10, 11), and
start using the website eval-free!

3. The State of the Eval
This section reviews the semantics and use of eval. Java-
Script [7] is supported by all major web browsers and is an
imperative, object-oriented language with Java-like syntax
and a prototype-based object system. An object is a set of
properties that behaves like a mutable map from strings to
values. In JavaScript, eval is a function defined in the global
scope. When invoked with a single string argument, it parses
and executes the argument. It returns the result of the last
evaluated expression. eval can be invoked in two ways: called
directly, the eval’d code has access to all variables lexically in
scope, when called through an alias, the eval’d code executes
in the global scope [7]. While eval is powerful, its use is often
unnecessary in practice. Consider,

eval(”r.m ” + input)

For likely values of input, the above code could be imple-
mented as

r[”m ” + input]

Rather than invoking the full power of eval, indexing r returns
the desired property with fewer surprises.

In previous work we identified patterns in the 10 K most
popular web sites [21]. Some are industry best practices,
but most result from poor understanding of the language,
repetition of old mistakes, or adapting to browser bugs. These
patterns can be detected by a simple syntactic check:

JSON A JSON string. { ”x”: 1 }
JSONP A use of JSON. foo({”x”:1})
Library Function definitions. function(){...}
Read Read of a property. x.foo
Assign Assignment. x.foo = 3
Typeof Type test expression. typeof(x)!=”undefined”
Try Trivial try-catch block. try{ x=3; } catch{}
Call Simple call. x.foo(1,2,3)
Empty Blank string. ””

JSON and JSONP are strings in JSON [7], a literal notation
used for data interchange. JSONP pattern is often used for
load balancing requests across domains. JSON parsing is

JSON JSONP Empty Library Typeof Read Call Assign Try Other
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Input
Storage
AJAX
DOM
Synthetic
Composite
Constant

Figure 2. Provenance by Pattern. Distribution of string
provenances across eval categories in each data set. X axis
is the pattern that string falls into, Y axis is proportion of
provenance in that category.

now supported by browsers natively. The Library pattern
captures uses of eval for loading code dynamically. The Read
and Assign patterns capture access and assignment to local
variables and object properties. The Call pattern captures
function calls. The Typeof, Try and Empty categories are
pathological cases with little raison d’être. We have found
that eval call sites are quite consistent with respect to the
pattern of the string argument. Across all of our data sets,
we observed only 399 eval call sites (1.4% of all call sites)
with strings in multiple pattern categories. Many of these
“polymorphic” cases were clearly a single centralized eval
used from many branches and for many purposes.

The eval strings come from different parts of the program.
We have identified seven common provenances.

Constant Appears in the source code.
Composite Concatenated from constants and primitives.
Synthetic Constant in a nested eval.
DOM Obtained from DOM or native calls.
AJAX Data retrieved from an AJAX call.
Cookies Retrieved from a cookie or persistent storage.
Input Entered by a user into form elements.

Fig. 2 shows the proportion of the different provenances by
pattern. What is striking is that some patterns such as JSON
(and the uncategorized grab bag Other) have close to 50%
of their arguments coming from input. These numbers are
relevant as they provide a natural upper bound on the ability
of static analysis to infer eval behavior.

4. Translating Eval calls
The primary purpose of Evalorizer is to replace eval call sites
with safer JavaScript idioms. Our approach is to collect eval
call strings at every call site and infer a classifier sufficient
to match all encountered strings. This concept was chosen
as a generalization of our previous work [21], in which we
showed that most eval strings fit into simple categories, and
most eval call sites only receive strings in a single category.

Consider the typical unnecessary use of an eval call site
fitting into the Read pattern, shown earlier:

var p = eval(”window.” + x);

Intuitively, this could be replaced by the following code, using
JavaScript’s map operator:

var p = window[x];

However, this intuition is built on an assumption about the
value of x. Namely, that x is a string, and a valid JavaScript
identifier. Without having actually seen the values of x, our
naı̈ve replacement may break the semantics of this eval call.
This holds even for broken code; changing the way an error
is reported may disrupt a deployed application.

Therefore, we generate a recognizer for those eval strings
which are actually used at this eval call site. We generate this
recognizer by collecting eval strings, parsing them as Java-
Script, and finding their commonalities. Once the recognizer
is made, we generate code to match these strings, and per-
form the same behavior. The generated code is constrained to
accept, at a minimum, only those eval strings which have ac-
tually been seen; in practice it accepts more. These processes
are detailed in this section.

4.1 Patterns vs. general classifiers
In our previous work, an eval taxonomy was proposed, and
recurring patterns [19, 21] were discovered. In modern Java-
Script, nearly none of these patterns are good uses of eval; the
Library and JSONP patterns may be justifiable, as they may in
certain conditions have no standard JavaScript replacement.
The foundation of this work comes from the following key
observation from the previous work: 98.7% of examined call
sites have only one pattern as an argument. In other words,
the overwhelming majority of eval call sites perform the same
kind of task each time they are executed. The exact string
passed in may differ, but it belongs to the same pattern.

Detecting patterns is unfortunately not enough to replace
eval call sites. Indeed, even if an argument to a given eval
call belongs consistently to the same pattern, the actual
value may change considerably from one call to another.
For instance eval(x) may receive the string ”foo()” then ”bar()”
as argument. Both of them belong to the pattern Call, but
actually these two calls are quite different, so a replacement
for all eval call sites in the Call pattern would need to be
quite general. Conversely, the call site may receive the strings
”document.appendChild(a)” and ”document.appendChild(b)”,
in which case our more general Call replacement would
be both overly general and inefficient. By classifying and
creating recognizers tailored to each eval call site, we can both
avoid unnecessary code and provide more specific details
about how each site is used.

4.2 Classifying arguments
Eval call sites are instrumented to record their arguments, and
those arguments are collected and analyzed. This data is then

used to translate the general call site into JavaScript code
which accepts the same strings and performs the same actions
with them, but does not accept unexpected and potentially
malicious input.

Although static analysis may be an attractive alternative to
find these classifications, we argue that static analysis would
be forced to overlook many evals, as indeed many of the
values taking part of the computation come from external
websites, user input or from the DOM (Fig. 2). For this
reason, we choose to use a dynamic analysis. Every time a
new argument is recorded by Evalorizer, the system will parse
the string and build an abstract syntax tree (AST) for this
expression. Every time a call site encounters a distinct new
AST, it is merged with previously seen trees. This merged tree
is used as a recognizer, which represents a highly-restrictive
subset of the JavaScript language. Many strategies may be
considered for merging these trees, so long as they encode in
some way the variable part of the strings. We will discuss in
the following subsections the pros and the cons of some of
these strategies.

Additionally to AST nodes, the trees may have choice
nodes and generalization nodes. Choice nodes are a simple
disjunction between two or more subtrees, generalization
nodes will be described later. The language recognized by
a tree with no choice or generalization nodes is a language
of size one; with no options, only a single string is accepted.
The language recognized by a tree with choice nodes but no
generalizations is finite and regular. Generalizations match
particular, chosen subsets of the JavaScript language, and
allow a recognizer’s language to be infinite and, if necessary,
non-regular. We describe first the creation of choice nodes
through merging, then the process of generalization.

To describe the behavior of each merging strategy, we will
again use the following eval call site as an example:

var p = eval(”window.” + x);

We will consider the simple case where x is always either
”width” or ”height”, and so the strings passed to eval are
”window.width” and ”window.height”. The ASTs for these ex-
pressions are shown in Fig. 3.

4.2.1 Choice
In order to accept more than one string, the recognizer
must contain either choice nodes or generalizations. Choice
nodes are created by merging the trees generated by multiple
invocations of the same eval call site. There are several
methods by which merging may be performed.

Constants. In the simplest case that the site is evaluated
with the same string in all circumstances, the trees to be
merged are identical, so the merging process yields the input
tree. The AST itself acts as a recognizer. This AST will only
recognize the exact string that was seen during analysis2.

2 As the recognition is based on the AST, whitespace change in the string
are accepted as well

window width

.

window height

.

(a) Example trees.

window width

.

window height

.

?

(b) Unbounded repetition.

window

width height

?

.

(c) Alternative nodes.

window Id(*)

.

(d) Member access gener-
alization.

Figure 3. Example of merging the running window.width-vs-window.height example.

Unbounded repetition. The easiest way to merge two differ-
ent trees is to consider them as outright alternatives (Fig. 3b),
joining both trees at a single choice node. To match a new
string against this recognizer, one simply needs to check it
against each tree. This is the simplest, most straightforward
approach. Unfortunately, because the number of alternatives
are unbounded, this leads to an enormously inefficient rec-
ognizer; we essentially must check each string against every
string that has ever been seen. This would lead to a size explo-
sion in our generated code, which is unacceptable as in Java-
Script the code size is considered essential. This technique
has been applied for similar purposes in other settings [8]. For
our simple example, this generates the tree shown in Fig. 3b,
which has clear redundancies.

Alternative nodes. Instead of considering the trees them-
selves as full alternatives, they can be merged from top down
to some differing point. When a node does not perfectly
match, an alternative (or choice) node is inserted as a parent
of these branches (Fig. 3c). The recognizer for this tree needs
only to diverge when it encounters the nested choice node.
This proposal reduces most of the drawbacks of previous
option since common parts of trees are shared. However, in
the worst case it is still unbounded. Our previous work [21]
demonstrated that in most cases a single call site will evaluate
strings of a single, simple pattern [21], thus code explosion
is unlikely. For our simple example, this generates the tree
shown in Fig. 3c. This recognizer accepts all of the example
inputs, but no others.

A recognizer, using any of the last 3 techniques, can be
built for any language, as long as it has an AST representation.

4.2.2 Generalization
Choice nodes allow us to capture a finite number of strings.
In practice, this has two obvious problems: as the number of
inputs becomes large, the number of choices at any choice
node will also grow, and it does not adapt in any way to strings
not seen in analysis. Generalization is the process of replacing

subtrees of a recognizer’s tree with broader parsers for chosen
subsets of the JavaScript language. In principle, any subtree
could be replaced with a general parser; in practice, this
doesn’t work. We could, for example, replace all trees by a
parser for the entirety of JavaScript, but then the purpose of
Evalorizer would be defeated: once code had been recognized,
the only way to evaluate it would be with eval itself. As such,
we generalize only those subsets of JavaScript for which there
is a clear replacement for eval which accepts the same subset
of JavaScript. Although the particular generalizations and
replacements are therefore JavaScript-specific, the technique
is usable in any language with reflective features.

Member expressions. The dot operator in JavaScript can
generally be replaced by the map operator, and the map
operator accepts a string.

eval(”window.”+ x) −→ window[x]

Because this replacement strategy is available, we may re-
place the right hand side of dot operators by generalizations
which accept all JavaScript identifiers. Our simple example
fits this case, so it may be replaced by the tree presented
in Fig. 3d. It is important to note that this generalized tree
accepts a much larger (in fact, infinitely larger) subset of Java-
Script than the previous tree (Fig. 3c). Although our approach
is to prefer generalization wherever possible, this change in
recognized language may have security implications.

Literal primitives. Numeric and string literals embedded
in JavaScript strings may be evaluated by Number and
JSON.parse3, respectively.

eval(”5”) −→ Number(”5”)

eval(’”S”’) −→ JSON.parse(’”S”’)

3 Although JSON.parse is intended to parse JSON, which is discussed
later, string literals are in fact a subset of JSON.

Our approach is to replace all numeric and string literals
by generalizations which accept all JavaScript numbers and
strings, respectively.

Literal objects. As JSON is a safe, pure subset of JavaScript,
JSON strings may naturally be passed to eval4. The latest
version of the ECMAScript standard adds the JSON.parse
function, which parses JSON in a pure, safe way, unlike eval.
This is the only form of generalization we perform which
accepts a non-regular language, though in principle any subset
of JavaScript, regular or otherwise, could be generalized.

eval(’({”S”:5})’) −→ JSON.parse(’({”S”:5})’)

Because JSON is only a form of literals, having no side-
effects or external references, this replacement is always safe.

Function arguments. Functions may be called with a vari-
adic number of arguments in JavaScript, and in fact, may be
called with a runtime-generated array of arguments of any
length with the apply method. If the arguments themselves
may be generalized by any of the above methods, then we
may further generalize the entire argument list, yielding a
recognizer which accepts argument lists of any length.

eval(’foo(1, 2)’)
−→ foo.apply(window, [Number(”1”), Number(”2”)])

4.3 Code generation strategy
Although having a recognizer for those strings passed to a
given eval call site is itself useful, the purpose of Evalorizer
is to replace eval calls. As such, the next step is to transform
the generated recognizers into JavaScript code which will
replace eval. In this section we discuss how the replacement
code itself is generated. This varies based on the shape of
the recognizer tree, so it will be defined incrementally. The
general shape of the replacement code for an eval call site is
straightforward:

if (arg matches pattern) { // Guard test
result = replacement code

} else // Fallback case
result = default action(arg);

The way that the matching and replacement code are gen-
erated varies by the nature of the recognizer, so will be
discussed in the next sections. The default action is a matter
of policy. This action is generally a fallback to eval(arg),
which preserves the original semantics of the eval call
site, but when this code is produced by the patcher tool
(in strict mode), it will instead throw an exception (throw
evalorizer exception(arg)). This strict mode allows safe em-
bedding of third party code where the entire allowed subset
of JavaScript is known.

4 For historical reasons, JSON is usually wrapped in parentheses when passed
to eval. Removing the parentheses in this case is a trivial optimization.

For simplicity of presentation, the regular expressions
shown in this section are simplified to ignore issues of whites-
pace, and other non-AST-impacting alterations to JavaScript
code. The true regular expressions generated by Evalorizer of
course are not simplified in this way.

4.4 Constant trees
The most straightforward replacement is for recognizer trees
which contain neither choice nodes nor generalizations. In
this case, the tree is precisely a JavaScript AST, so Evalorizer
can simply deparse it as its own replacement code. All trees
without generalizations represent regular languages, so a reg-
ular expression can be generated to match the argument; for
the case of constant trees, even a regular expression is often
more powerful than necessary, a simple string comparison of
the argument may be sufficient. In a call site which had only
been called with the string ”window.width”, for example, the
generated code is:

if (arg === ”window.width”) {
result = window.width;

} else
result = eval(arg);

4.5 Choices
In the presence of choice nodes, it is necessary to nest guards
and perform different replacements based on the choice. This
is not because of the nature of the language matched by the
recognizer (which is regular), but because the replacement
code must be different depending on which choice is taken.
As such, Evalorizer generates a single match case for the
entire tree which captures the choice subtree by a grouping
within the generated regular expression, then matches the
choice subtree in a nested condition. To follow our simple
example of eval(”window.”+x), with only ”width” and ”height”
as values of x and no generalization performed (i.e., Fig. 3c),
the generated code is:

var re = /ˆwindow\.(width|height)$/;
if (match = (re.exec(arg))) {

if (match[1] === ”width”) {
result = window.width;

} else if (match[1] === ”height”) {
result = window.height;

}
} else

result = eval(arg);

The options may be checked in any order, but since the
recognizer was generated from a selection of real eval strings,
it is logical to order them by the frequency with which
particular subtrees were seen.

4.6 Generalization
Each form of generalization node requires its own strategy
for matching and replacement, so each is discussed separately.
With the exception of JSON, all generalizations presented

here accept only regular languages. As such, regular expres-
sions are used to match them. The generalization node within
the tree is replaced by a safe eval alternative in the replace-
ment code, though the particular alternative is specific to the
generalization.

Member expressions. In JavaScript, it is possible to access
members of objects by using the map operator. As such,
we generalize the right hand side of the dot operator to
match JavaScript identifiers5, and generate code using the
map operator. Our simple example, eval(”window.”+x), with
generalization over x, is transformed into the following code:

var re = /ˆwindow\.([a−zA−Z $][a−zA−Z\d $]∗)$/;
if(match = re.exec(arg)) {

result = window[match[1]];
} else

result = eval(arg);

Because the identifier is collected as a string and no choice
nodes exist, we need only to generate one replacement, rather
than one per all possible identifiers.

Literal primitives. The generalization of literal primitives
is straightforward, as the grammars for both numeric and
string literals are regular, and safe alternatives to eval for
both are known. Consider an example eval(”foo(”+ x + ”,”+
y + ”)”), where x and y always contain a string and numeric
literal, respectively, and so a recognizer which generalizes
over numeric and string literals has been generated. The
transformed code for this case is6:

var re = /ˆfoo\((”([ˆ\\”]|\\.)∗”),(\d+)\)$/;
if (match = re.exec(arg)) {

result = foo(JSON.parse(match[1]), Number(match[3]));
} else

result = eval(arg);

Literal objects. JSON.parse parses only valid JSON and
is hence safe and pure. Our code generator can therefore
avoid the complicated parsing of JSON itself, and simply
replace eval(arg) with JSON.parse(arg)7. The caveat is that
JSON is not a regular language, so matching it becomes
complicated. Because JSON cannot be matched correctly
by a regular expression, we match it in two steps: First
we use a very broad regular expression to match a large
superset of JSON8, then we use JSON.parse to validate that
the matched substring is in fact JSON. This technique has the
implication that a recognizer cannot contain multiple JSON

5 As JavaScript allows Unicode characters in identifiers, but JavaScript’s
regular expression engine is insufficient to specify all valid identifier
characters, we only accept ASCII identifiers.
6 As the regular expressions for string and numeric literals in JavaScript are
actually quite complicated, we present a simpler one here.
7 As JSON strings are usually parenthesized when passed to eval to avoid
being parsed as block statements, we strip out these parentheses if present.
8 Because this regular expression is itself quite complicated, our example
shows a univeral match, .∗. The ambiguity is still resolved by the presence
of try/catch around JSON.parse.

generalizations within the same choice node, as the resultant
regular expression would be ambiguous. As an example,
consider the common pattern of JSONP, e.g. eval(”foo(”+
x + ”)”) where x contains only valid JSON strings. Assuming
that the recognizer has formed a generalizer node for x, the
code for the transformed eval call site is:

var re = /ˆfoo\((.∗)\)$/;
if (match = re.exec(arg)) {

try {
json = JSON.parse(match[1]);
result = foo(json);

} catch (ex) {
result = eval(arg);

}
} else

result = eval(arg);

Function arguments. Functions may be called with a
runtime-defined variadic number of arguments through the
apply method. This generalizer is only used by Evalorizer
when the arguments themselves conform to a single general-
izer, but in principle could work with any regular arguments.
An eval call site which has received the strings ”foo(1)” and
”foo(2,3)” would generate a recognizer which generalizes
the argument list to a variadic list of numeric literals, and
transform the eval call site as follows:

var re = /ˆfoo\(((\d+,)∗\d+)\)$/
if (match = re.exec(arg)) {

var args1 = match[1].split(”,”);
var args2 = [];
for (var i = 0; i < args1.length; i++)

args2.push(Number(args1[i]));
result = foo.apply(window, args2);

} else
result = eval(arg);

4.7 Preserving original program semantics
One of the main concerns of this work is to preserve the
original behaviour of websites. The semantics of eval in Java-
Script is subject to some oddities. When eval is called directly,
the code is evaluated within the enclosing lexical scope. On
the other hand when it is called indirectly, i.e., through an
alias, the code is evaluated in the global scope. Thus to ensure
that our replacement code behaves like the original (variable
access and hoisting), the generated code must be inlined
and no factorization is possible. Unfortunately, this comes at
the expense of the code size. Additionally, because it is not
generally possible to know whether any call will indirectly
dispatch to eval, and we cannot allow eval itself to be an alias,
our tool is currently unable to handle indirect calls to eval.

While eval is capable of evaluating both expressions and
statements, it is itself an expression. As such, a difficulty
arises when an eval accepts a statement but is embedded into
a larger expression. The value returned by eval is the value of
the last expression evaluated. Fortunately the comma operator,

i.e., a sequence separated by comma, has the same behavior
and thus can be used as a substitute. Our replacement code
make heavy use of this operator. However, only expressions
can be used with the comma operator, and eval may contain
other forms of statements. In order to handle this case,
Evalorizer would need to partially evaluate the context which
embeds eval, then inject all of the evaluated statements,
and finally finish the outer context. No such case has been
encountered on real website, so we currently not support this
case, but we do not expect difficulties in doing so should the
need arise.

Finally, our replacement code makes use of temporary var-
iables. These variables may collide with user code variables.
However, since we can only generate legal JavaScript code,
these name clashes are unavoidable. It is arguable that some
analysis may check for name conflicts, but due to the dynamic
nature of JavaScript (and particularly its global scope), this
too could be unsafe. Evalorizer’s solution is simply to prefix
all its own variables by an unusual pattern, making name
clashes highly unlikely in practice.

5. Evalorizer
In this section we describe the architecture of Evalorizer,
starting by explaining the proxy part (Sect. 5.1) then the
patcher in Sect. 5.2.

5.1 The Proxy
As the name suggests, the Evalorizer proxy is an HTTP proxy.
It is implemented in JavaScript and runs on node.js9, a Java-
Script runtime based on Google V810, designed for writing
scalable internet applications such as web servers and web
proxies. A proxy allows dynamic instrumentation of Java-
Script code that is browser-independent, as well as being
server and server-side language independent. Additionally it
can work with all means of including JavaScript, i.e., inlined
with <script> tags, in event handlers or in external files.
Moreover it works with both static and dynamic pages built
with any kind of technologies. The proxy does not require
any changes to the development, testing or deployment
environments since it inspects actual traffic to and from the
website, and does not depend on the original eval call string
or how it was originally obtained.

Instrumenting a call site. The proxy inspects all the Java-
Script code sent to the browser. For every call site, its location
is logged. Finding the eval call sites is done by building the
AST of all the JavaScript code received from the server. The
eval call site node is then instrumented with the logging code
(logEval).

Logging invocations. When eval is invoked, the (logEval)
code will send an asynchronous HTTP request (XMLHttpRe-

9 http://nodejs.org/
10 http://code.google.com/p/v8/

quest) with the argument and the call site identifier. The proxy
receives the request and logs it.

5.1.1 Adding short-circuits.
Evalorizer adds to the logEval code a few “short-circuits” for
extremely common uses of eval. Since the great majority
of eval invocations are used to read variables or deserialize
JSON objects, the code for these two cases is also embedded.
On a page reload, if the proxy has seen at least one argument
for that call site, the proxy also embeds the best recognizer
created yet for that call site. The main purpose of “short
circuits” is to give an instant intuition to the user if Evalorizer
will be able to resolve that call site properly or not and wether
sufficient logs have been collected or not. The user can figure
out the resolved call sites by inspecting the proxy log. The
short-circuits are not needed for the creation of the final patch.

5.2 The Patcher
Starting form the logs collected by the proxy, the patcher
applies the techniques discussed in Sect. 4. Since evals are
ideally all supposed to be replaced, the fallback may be
outright removed. We provide two options for removing
the fallback. In a strict mode, it is replaced by throwing
an exception. This behavior is recommended especially for
eval of third party code, as it reduces the possibility of
code injection, XSS attacks or other attacks exploiting eval’s
characteristics. The alternative is to use eval as a fallback,
it uses eval if it fails to recognize some invoked argument,
and this can be used for call sites that were not invoked
sufficiently.

The transformation for each page is collected, and applied
to the original code. Evalorizer also generates a patch suitable
for the Unix patch command, in unified format. Finally the
programmer may choose if he wants to apply the patch or
copy the whole, updated file. Furthermore, as this solution is
intended to allow for sound, gradual replacement, the patch
can be generated to use a logging facility as its fallback. This
requires that the user hosts a light version of Evalorizer on the
site’s server, but has the advantage of catching missed eval
calls with real-world users.

6. Evaluation
We validate Evalorizer with three different experiments. The
first one intends to show that our heuristics are legitimate
and are more efficient than a brute-force approach to the eval
replacement problem. For this a large set of logs collected
from the top 100 most popular websites is used as well as
some live websites which have significant usage of eval. The
second will show that our system performs well even with
incomplete sampling of eval strings, i.e., under the open world
assumption, by using cross-validation techniques. Finally a
third experiment will briefly present some efficiency results
while browsing webpages with eval, during instrumentation,
and once these pages are patched.

http://nodejs.org/
http://code.google.com/p/v8/

6.1 Corpus
In most languages, gathering a substantial corpus is difficult
because accessibility to source code and runtime configura-
tions is limited by pragmatic and legal issues. On the web,
this is generally not the case, as JavaScript is only transmitted
in source form. As such, our corpus selection is not a matter
of accessibility, but utility: we wish to analyze popular pages
which use eval in typical ways.

The largest corpus we used to validate our methodology
is the interactive logs collected in our previous work [21].
These logs represent real interactions with the top 100 most
popular websites at the time, according to the alexa.com
list as of March 3, 2011. At least two interactions by two
different researchers were performed for each site. Each log
represents a human interaction, with each session lasting 1 to
5 minutes and approximating a “typical” interaction with the
website, including logging into accounts where necessary. Of
these 100 recorded sites, all use JavaScript, and 82 use eval.
The logs represent 204MB of unique JavaScript code, a total
of 7 078 calls to eval (with an average of 84 eval calls per
trace) and a total of 8.2MB of code passed to the eval function
(with an average of 1 210 bytes per trace). As this data was
collected from the most popular websites, its extensive use
of eval is furthermore a validation of the necessity of our
technique.

Because our largest corpus is recorded logs, and not live
web pages, we could only use it to validate the technique,
and not the implementation. We selected for further study
4 websites from this list which had considerable use of
eval: cnn.com, myspace.com, alibaba.com, ebay.
de. We cached a few pages from each website, and hosted
them locally to test the complete system without upstream
changes. These cached portions include 12.2KB, 1.6K, 3.6K
and 6.4K of JavaScript code, respectively, and generated 738,
42, 24, and 99 calls to eval. Those numbers are relatively
small, but typical, and they represent a complete set for the
cases seen from the logs. The cache included more eval call
sites, but they were never invoked in this configuration.

In many areas of research relating to JavaScript, two pop-
ular suites of benchmarks are used to validate results: Sun-
Spider and V8. Although they can be useful in some cir-
cumstances, our focus is on eval, and their use of eval is
uninteresting. The former uses eval in four of its included
benchmarks, the latter in only one, and neither are represen-
tative of real world JavaScript behavior [18, 19].

6.2 Distribution of call sites
The purpose of this first experiment is twofold: we show that
the tool works and actually removes eval, and demonstrate
that our tree representation and our generalizing strategy are
well suited and allow for shorter code than a brute-force
approach which would directly inline the code of each eval
call string.

Constant Single-pattern Multi-pattern
Benchmark cs. invoc. cs. invoc. cs. invoc.

CNN 4 37 20 1 364 2 4
MySpace 6 1 135 3 10 1 6
Alibaba 15 578 0 0 1 7
eBay.de 9 26 39 186 1 7

All 179 2 928 411 9 104 112 901

Constant stands for a call site where all its invocations have the exact
same string, Single-pattern for recognizers which matches a single
pattern, i.e., no choice nodes, and Multi-pattern for all remaining
cases. Numbers for actual websites are reported twice, once in their
own row, once in “All”.

Table 1. Call sites meta-pattern distribution.

Table 1 reports how many recognizers of each kind have
been generated for each call site (static) and how many
times they are invoked (dynamic). In this table, “constant”
means that the string will be inlined literally and no choice
nodes or generalizations exists. Hence those cases are the
equivalent of the brute force approach and will be handled
by a simple eval cache strategy, which is used in most
JavaScript virtual machines. The “single-pattern” category
represents recognizers which match a pattern containing some
generalization, but no choice nodes; for instance, matching all
numbers instead of a single constant. Finally, “multi-pattern”
is the most general, covering all remaining cases.

According to these numbers, 25% of the call sites recorded
are constants, representing roughly 23% of the invocations.
All others recognizers are more general, thus would lead to
code explosion if they were handled in this straightforward
way. This suggests that programmers are still unaware of
alternatives to eval. Multiple-pattern while less useful, is
needed for completeness; without it, 7% of the dynamic
calls would fall back to eval (and 16% of the call sites).
Unsurprisingly, thanks to our approach, once the code is
patched, replaying the experiment does not trigger a single
eval. Hence the number of mispredictions is always null and
thus not included in this table. Moreover we classified all eval
call sites of the 4 websites manually and we were unable
to find, without changing the surrounding code, a better
classification than the one reported by our tool.

Table 2 reports the effect of each generalization. For each
generalization, we count each generalization node, and how
many time it was invoked. ”Other nodes” report the number
of non-generalized nodes. Some of the eval call sites were
only invoked once despite our best efforts, and we report
those separately. We attempted the generalizations on that
single argument, since it is very likely that the generalization
holds for any other still not encountered argument according
to statistics of [19].

All these numbers are significant even when compared
to non-generalization nodes, hence having special cases

alexa.com
cnn.com
myspace.com
alibaba.com
ebay.de
ebay.de

nodes invoc. nodes invoc.
Category appears one

Member expressions 2 688 7 862 149 149
Literal primitives 12 904 33 825 5 908 5 908
Literal objects 271 1 260 317 317
Function arguments 105 2 922 113 113

Other nodes 13 181 39 498 9 289 9 289

Table 2. The number of generalization nodes and invoca-
tions affected by each generalization.

for these generalizations seems to be a good strategy. The
other nodes are used for whole expressions, but most of
them are operators standing between generalized categories.
From a purely numerical standpoint, the most profitable
generalization, far above all others, are literal primitives. This
is unsurprising since most eval calls only differ from each
other by some constant coming from user input or produced
by some code generator. More surprisingly, the special case
of function arguments is triggered on average 14 times for
each node, where member expressions are only triggered on
average 3 times for each node. However, in absolute terms,
member expressions are still triggered much more often than
function arguments. This too is unsurprising since in all
languages, and JavaScript is not an exception, reads from
members are a very common action. Even if literal objects
serialization is triggered less than all other generalizations, it
is still a good idea to have a special case for several reasons.
First, it reduces considerably the size of the recognizer and
the code generated; literal object strings are generally long
and introduce a lot of variability. A second reason, though
a less clear one, is from an efficiency standpoint. Most
browsers are faster to parse JSON strings than evaluating
them, though Safari is a notable exception, which according
to our experiments is slightly slower for this task.

From our perspective, this experiment is a success, since
all our generalizations seem adequate as they both reduce
the code size and increase the power of generalization of
Evalorizer.

6.3 Classification stability
At heart, Evalorizer is a learning algorithm. However, unlike
classical learning algorithms, it builds an overfitted classifier
to assuredly match all input strings. On our dataset, with
only the eval strings we’ve seen, eval will absolutely never
be called, as Evalorizer learns by rote. In order to evaluate
Evalorizer’s generalization power, it must be evaluated on
inputs that were not used in the learning phase. To simulate
this, we use the k−fold cross-validation technique. For each
eval call site, invocation logs are split into k sets of equal
size. k − 1 of these sets are used as input to train Evalorizer.
Once trained, the code is patched in strict mode, such that
we can determine and catch any failing eval cases. Finally

Mispredict % Call sites %
Method affected

Leave-one-out 215 1.7% 99 18.2%
Holdout 374 2.89% 128 14%

Table 3. Misprediction using two cross-validation meth-
ods.

the unused set is used to validate the patched code. This
experiment is then repeated until each set has been used as
a test set. Two special cases of this technique may also be
considered, the Holdout method, where k is equal to two, and
the Leave-one-out method, where k is equal to the size of
the dataset. We applied both holdout and leave-one-out. The
former is not to our advantage since the training set is very
small, and the splitting point has a huge impact. The latter
may be computationally expensive but in practice takes no
more time than computing the residual error and it is a much
better way to evaluate models.

Since at least two samples are needed for this experiment,
i.e., one as training and one to test, all call sites with only one
string available have been removed, and only 702 call sites
remain, with 12 933 samples. This represents roughly 37% of
the whole dataset. Results are shown in Table 3.

The worst case is with the holdout method. There, 2.89%
of input strings are mispredicted. The number is encourag-
ing; clearly most eval replacements are well represented by
our system even when the training set is unreasonably small.
These mispredictions affected 18.2% of the eval call sites.
On the leave-one-out experiment, the results are, unsurpris-
ingly, better; only 1.7% misprediction, distributed on 14%
of call sites. The distribution of percentage of errors by call
site (Fig. 4a) reveals two extreme cases. Either call sites are
perfectly predicted, or Evalorizer fails totally. The straightfor-
ward conclusion is that these call sites are highly polymorphic,
and not enough samples were available for them. To under-
stand why so many call sites are affected by misprediction,
it is necessary to look at the number of samples available
on call sites having at least one error. Therefore, Fig. 4b and
Fig. 4c shows, respectively for the leave-one-out and the hold-
out methods, a distribution of the number of samples for a
call site which has at least one error. Unsurprisingly, call sites
with few samples tend to have more errors in both methods,
since if the number of samples is two, these methods are
equivalent. We argue that a better acquisition of these call
sites, i.e., spending more time collecting eval strings, will
solve this problem.

The Fig. 4c has a strange peak at 42. A manual inspection
of this particular call site, used on many eBay subdomains,
shows that it was used for browser detection. The mispre-
dicted arguments is a call to a helper function which sets up
non-standard variables used by some browser. These calls
only appear once and very early in a browsing session. How-
ever, while the holdout method split the data in two sets, these

nb
 o

f c
al

l s
ite

s

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0
60

0

(a) % of error (leave-one-out)
C

al
l s

ite
 w

ith
 o

ne
 m

is
pr

ed
ic

tio
n

0 10 20 30 40 50

0
20

40
60

80
(b) Number of samples per call sites (leave-one-out)

C
al

l s
ite

 w
ith

 o
ne

 m
is

pr
ed

ic
tio

n

0 10 20 30 40 50

0
20

40
60

80
10

0

(c) Number of samples per call sites (holdout)

Fig. 4a shows the distribution of misprediction (the x-axis is % of misprediction) by call site for the leave-one-out method. Fig. 4b and 4c show,
respectively for the leave-one-out and holdout methods, the number of inputs (on x-axis) for call sites containing at least one misprediction.

Figure 4. Distribution of errors.

samples are never seen in both of them. These errors are hence
just statistical artifacts, and in a normal Evalorizer session
they would be recorded, and would never be mispredicted.

This experiment bolsters our claim that our tool’s general-
ization is robust enough to work on true websites. Therefore
we consider that our tool is sufficient to remove eval on real
code and may be, even in its current prototype version, used
in a production environment.

6.4 Runtime efficiency
Although the aim of Evalorizer is to advise web developers in
the replacement of eval, it is arguable that, to be useful, the
runtime overhead of our tool needs to be low. Therefore, we
measured the speed of pages while using our tool. However,
since most websites do not use eval frequently, and as such
would not have their performance affected at all, we only
concentrate on the web page which our previous study
showed the most usage of multiple kinds of eval Table 1,
namely CNN. We claim that if this web page, as the worst
case, is not affected, other web page will not be either.
To measure runtime of this site, we used JSBench [20] to
generate a deterministic benchmark from CNN website, and
use it to measured run times. This experiment was run on a 2.4
GHz Intel Core i5 Mac with 4GB 1067 MHz DDR3 RAM
running Mac OS X Lion. Three browser were considered:
Google Chrome 18.0.973.0, Safari 5.1.12 and Opera 11.60.

Table 4 shows that while eval code is instrumented, the
performance is degraded, but by a small amount. Most of
this overhead is actually due to the systematic read and
JSON patterns short-circuits. A simple solution to most
of this overhead could simply consist of disabling these
short-circuits in the Evalorizer proxy. Since eval hampers
most static analysis made by JavaScript virtual machines, it
makes sense to see if once the code is patched some runtime
efficiency improvement may be expected on the website.

Original Instrumented Patched
Browser avg. σ avg. σ ovh. avg. σ ovh.

Chrome 139 50 224 72 61% 115 27 -18%
Safari 166 8 231 19 39% 153 10 -8%
Opera 265 17 345 39 30% 285 13 7%

Average time (avg.) and standard deviation (σ) are in milliseconds.
Overhead (ovh.) is expressed as a percentage.

Table 4. Runtime efficiency and overhead of Evalorizer on
CNN website.

This is actually confirmed on most browsers, opera being an
exception, however the difference is close to the confidence
interval. As this is a prototype, we did not focus on optimizing
our code generator. Even as such, once patched, only 369
bytes of eval replacements (less than 0.015% of the total
JS code) is added to CNN. We expect this overhead to be
acceptable for all practical purposes.

7. Related Work
The implementation of Evalorizer is based on the JSBench
framework [20]. This work was motivated by the results of
and evaluated by the framework of our previous analysis of
how eval is used in JavaScript [21] [19]. The combination
of simple patterns and consistency are what motivated the
present paper.

Work to guide static typing by dynamic instrumentation of
eval has been done in the context of Ruby by Furr et al. [8],
but this work makes no attempt to generalize beyond seen
eval strings, as in that context the range of strings seen at
any call site is very small. Furthermore that work does not
to our knowledge make any attempt to merge seen strings,
resulting in verbose replacement code. Jensen et al. [14]
use a technique similar to ours in static analysis of Java-

Script, but their technique does not include a mechanism
similar to generalizations, and so with the exception of certain
specializations, they are only able to accept particular strings
which their static analysis framework indicates are possible.
Since their technique uses static analysis, this list is sound
and complete when attainable, but cannot apply to some
particularly treacherous cases of eval. We know of no reason
why our techniques cannot complement each other to create a
more broadly applicable and robust hybrid analysis approach.

Some papers apply strength reduction of eval in order to
better perform analyses. The analysis done for AJAX intru-
sion detection of Guha et al.[10] converts unanalyzable eval
calls into analyzable JSON parsing by intercepting client
requests. But their solution only looks at JSON. Our analy-
sis complements this by converting more general classes of
eval calls into statically analyzable equivalents. They use a
similar technique to intercept responses, but do not provide
replacements, instead their proxy has to be enabled all the
time to prevent the intrusion. A different approach to pre-
vent possible malicious behavior of eval is the sandboxing
of unsafe code including eval from untrusted sources. The
solution by Dewald el al.[5] proposes a framework for sand-
boxing unsafe code, but unlike Evalorizer it requires changes
to the browser. The code is not changed by this approach, and
therefore does not enhance results of static analysis on such
code. The runtime will also run slower due to the sandboxing
overhead.

Many other works have simply ignored or outlawed eval
altogether. Gatekeeper’s [9] enforcement of security policies
depends on the outright exclusion of eval, as does Maffeis et
al.’s isolation technique [16]. The latter’s framework provides
the ability to define wrappers for the eval that parses and
rewrites the argument to add the necessary checks for safety
to create a safer argument for eval, but making that general
would require running a full JavaScript parser written in
JavaScript on the client machine each time eval is invoked,
therefore adding a large overhead. Unlike the proposal in [16],
the final patched version from Evalorizer has no overhead, if
a slight speed-up, since the analysis itself was done earlier
on the proxy during the acquisition phase. Moreover the both
of those propositions have a practical limitation: untrusted
code must not use eval. This limitation is severely limiting
by design, since untrusted code has to be considered always
unsafe and may do whatever it wants.

There are methodologies such as Chugh et al. [4] which
take into consideration eval while doing analysis. This staged
information flow technique starts by doing a classic static
analysis without considering eval, then when eval is actually
invoked, its value is propagated and a partial or whole analysis
is done again. This hybrid methodology has to punt static
analysis to a dynamic one, where the replacement of eval
in our approach yields normal JavaScript code with few or
no eval calls for future static analysis, considerably different
goals.

Another more subtle concern with eval in research is
that although several formal semantics for JavaScript ex-
ist [15] [11], none to our knowledge include support for eval.
Although not a significant issue with the semantics them-
selves, this has the side effect that any further research using
these formal semantics as a base is unlikely to have expected
results when eval is present. Since our solution is to remove
eval from code, the results produced by Evalorizer are com-
patible with these formal semantics.

8. Conclusions
Despite the fact that eval is dangerous and mostly useless,
many people still use it. This is likely because of its ease of
use, legacy code which is difficult to change, or because they
are not sure what will be evaluated, for instance because it
came from third party code. Therefore we proposed in this
paper Evalorizer, a tool and technique which dynamically
inspects arguments of eval and suggests replacements. This
tool does not require any knowledge of the actual code, nor
changes to the browser or to the server. This tool is based
on a simple key idea, that a call site generally has only one
purpose, which is confirmed by the observation that most
eval call sites receive arguments which are the same or very
similar. Evalorizer customizes each eval call site according
to actual values passed to eval, while trying to generalize it
as much as possible with JavaScript’s features. Evalorizer
has been evaluated both on extensive logs from the 100
most used websites and on four sites which have significant
use of eval. This evaluation showed that more than 97% of
eval invocations have been replaced by our tool under open
world assumption, and this even with a small training set.
Moreover the slowdown using this tool is reasonable, and
once eval has been definitely replaced, slight performance
gain may be expected. According to these experiments, we
conclude that this simple idea works surprisingly very well
on true websites and actually and practically removes calls
to eval. We see another application to this work to JavaScript
virtual machines. Many virtual machines cache eval strings
for performance reasons. Replacing this simple cache by our
technique may improve eval efficiency.

Acknowledgments. We thank Ben Livshits, Anders Møller
and Peter Thiemann for fruitful discussions, and the anony-
mous reviewers for their comments. This work was partially
supported by a SEIF grant from Microsoft Research, a Fel-
lowship from the Mozilla Corporation and the NSF grant
OCI-1047962.

References
[1] Christopher Anderson and Sophia Drossopoulou. BabyJ: From

object based to class based programming via types. Electr.
Notes in Theor. Comput. Sci., 82(7):53–81, 2003. doi: 10.
1016/S1571-0661(04)80802-8.

[2] Christopher Anderson and Paola Giannini. Type checking for
JavaScript. Electr. Notes Theor. Comput. Sci., 138(2):37–58,
2005. doi: 10.1016/j.entcs.2005.09.010.

[3] Michael Bolin. Closure: The Definitive Guide. O’Reilly Series.
O’Reilly Media, 2010. ISBN 9781449381875. URL http:
//books.google.ch/books?id=p7uyWPcVGZsC.

[4] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner.
Staged information flow for JavaScript. In Conference on
Programming language design and implementation (PLDI),
pages 50–62, 2009. doi: 10.1145/1542476.1542483.

[5] Andreas Dewald, Thorsten Holz, and Felix C. Freiling. AD-
Sandbox: sandboxing JavaScript to fight malicious websites. In
Proceedings of the Symposium on Applied Computing (SAC),
2010. doi: 10.1145/1774088.1774482.

[6] Manuel Egele, Peter Wurzinger, Christopher Kruegel, and
Engin Kirda. Defending browsers against drive-by downloads:
Mitigating heap-spraying code injection attacks. In Detection
of Intrusions and Malware, and Vulnerability Assessment, 2009.
doi: 10.1007/978-3-642-02918-9_6.

[7] European Association for Standardizing Information and
Communication Systems (ECMA). ECMA-262: EC-
MAScript Language Specification. Fifth edition, Decem-
ber 2009. URL http://www.ecma-international.
org/publications/standards/Ecma-262.htm.

[8] Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster.
Profile-guided static typing for dynamic scripting languages.
In Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), 2009. doi: 10.
1145/1640089.1640110.

[9] S. Guarnieri and B. Livshits. Gatekeeper: Mostly static
enforcement of security and reliability policies for Java-
Script code. In USENIX Security Symposium, 2009. URL
https://www.usenix.org/events/sec09/tech/
full_papers/sec09_javascript.pdf.

[10] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using
static analysis for Ajax intrusion detection. In Conference on
World wide web (WWW), 2009. doi: 10.1145/1526709.
1526785.

[11] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The
essence of JavaScript. In European Conference on Object-
Oriented Programming (ECOOP), 2010. doi: 10.1007/
978-3-642-14107-2_7.

[12] Dongseok Jang and Kwang-Moo Choe. Points-to analysis for
JavaScript. In Proceedings of the Symposium on Applied Com-
puting (SAC), 2009. doi: 10.1145/1529282.1529711.

[13] Simon Jensen, Anders Møller, and Peter Thiemann. Type
analysis for JavaScript. In Symposium on Static Analysis (SAS),
2009. doi: 10.1007/978-3-642-03237-0_17.

[14] Simon Holm Jensen, Peter A. Jonsson, and Anders Møller.
Remedying the eval that men do. In Proceedings of the

International Symposium on Software Testing and Analysis
(ISSTA), 2012. doi: 10.1145/2338965.2336758.

[15] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An oper-
ational semantics for JavaScript. In Symposium on Program-
ming Languages and Systems (APLAS), 2008. doi: 10.1007/
978-3-540-89330-1_22.

[16] Sergio Maffeis, John Mitchell, and Ankur Taly. Isolating
JavaScript with filters, rewriting, and wrappers. In Com-
puter Security – ESORICS 2009, 2009. doi: 10.1007/
978-3-642-04444-1_31.

[17] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek.
Evaluating the design of the R language. In European Con-
ference on Object-Oriented Programming (ECOOP), 2012.
doi: 10.1007/978-3-642-31057-7_6.

[18] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin
Zorn. JSMeter: Comparing the behavior of JavaScript
benchmarks with real web applications. In Conference
on Web Application Development (WebApps), 2010. URL
http://www.usenix.org/events/webapps10/
tech/full_papers/Ratanaworabhan.pdf.

[19] Gregor Richards, Sylvain Lesbrene, Brian Burg, and Jan Vitek.
An analysis of the dynamic behavior of JavaScript programs. In
Proceedings of the ACM Programming Language Design and
Implementation Conference (PLDI), 2010. doi: 10.1145/
1806596.1806598.

[20] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek.
Automated construction of JavaScript benchmarks. In Con-
ference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), 2011. doi: 10.1145/
2048066.2048119.

[21] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek.
The eval that men do: A large-scale study of the use of eval in
JavaScript applications. In European Conference on Object-
Oriented Programming (ECOOP), 2011. doi: 10.1007/
978-3-642-22655-7_4.

[22] Konrad Rieck, Tammo Krueger, and Andreas Dewald. Cujo:
Efficient detection and prevention of drive-by-download at-
tacks. In Annual Computer Security Applications Conference
(ACSAC), 2010. doi: 10.1145/1920261.1920267.

[23] Peter Thiemann. Towards a type system for analyzing Java-
Script programs. In European Symposium on Programming
(ESOP), 2005. doi: 10.1007/978-3-540-31987-0_
28.

http://dx.doi.org/10.1016/S1571-0661(04)80802-8
http://dx.doi.org/10.1016/S1571-0661(04)80802-8
http://dx.doi.org/10.1016/j.entcs.2005.09.010
http://books.google.ch/books?id=p7uyWPcVGZsC
http://books.google.ch/books?id=p7uyWPcVGZsC
http://dx.doi.org/10.1145/1542476.1542483
http://dx.doi.org/10.1145/1774088.1774482
http://dx.doi.org/10.1007/978-3-642-02918-9_6
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://dx.doi.org/10.1145/1640089.1640110
http://dx.doi.org/10.1145/1640089.1640110
https://www.usenix.org/events/sec09/tech/full_papers/sec09_javascript.pdf
https://www.usenix.org/events/sec09/tech/full_papers/sec09_javascript.pdf
http://dx.doi.org/10.1145/1526709.1526785
http://dx.doi.org/10.1145/1526709.1526785
http://dx.doi.org/10.1007/978-3-642-14107-2_7
http://dx.doi.org/10.1007/978-3-642-14107-2_7
http://dx.doi.org/10.1145/1529282.1529711
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1145/2338965.2336758
http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1007/978-3-642-04444-1_31
http://dx.doi.org/10.1007/978-3-642-04444-1_31
http://dx.doi.org/10.1007/978-3-642-31057-7_6
http://www.usenix.org/events/webapps10/tech/full_papers/Ratanaworabhan.pdf
http://www.usenix.org/events/webapps10/tech/full_papers/Ratanaworabhan.pdf
http://dx.doi.org/10.1145/1806596.1806598
http://dx.doi.org/10.1145/1806596.1806598
http://dx.doi.org/10.1145/2048066.2048119
http://dx.doi.org/10.1145/2048066.2048119
http://dx.doi.org/10.1007/978-3-642-22655-7_4
http://dx.doi.org/10.1007/978-3-642-22655-7_4
http://dx.doi.org/10.1145/1920261.1920267
http://dx.doi.org/10.1007/978-3-540-31987-0_28
http://dx.doi.org/10.1007/978-3-540-31987-0_28

	Introduction
	Use case
	The State of the Eval
	Translating Eval calls
	Patterns vs. general classifiers
	Classifying arguments
	Choice
	Generalization

	Code generation strategy
	Constant trees
	Choices
	Generalization
	Preserving original program semantics

	Evalorizer
	The Proxy
	Adding short-circuits.

	The Patcher

	Evaluation
	Corpus
	Distribution of call sites
	Classification stability
	Runtime efficiency

	Related Work
	Conclusions

