
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Julia: Dynamism and Performance Reconciled by Design

JEFF BEZANSON, Julia Computing, Inc.
JIAHAO CHEN, Capital One
BEN CHUNG, Northeastern University
STEFAN KARPINSKI, Julia Computing, Inc
VIRAL B. SHAH, Julia Computing, Inc
LIONEL ZOUBRITZKY, École Normale Supérieure and Northeastern University
JAN VITEK, Northeastern University and Czech Technical University

Julia is a programming language for the scientific community that combines features of productivity languages,
such as Python or MATLAB, with characteristics of performance-oriented languages, such as C++ or Fortran.
Julia’s productivity features include: dynamic typing, automatic memory management, rich type annotations,
and multiple dispatch. At the same time, it allows programmers to control memory layout and leverages a
specializing just-in-time compiler to eliminate much of the overhead of those features. This paper details the
design choices made by the creators of Julia and reflects on the implications of those choices for performance
and usability.

CCS Concepts: • Software and its engineering → Language features; General programming languages;
Just-in-time compilers; Multiparadigm languages;

Additional Key Words and Phrases: multiple dispatch, just in time compilation, dynamic languages

ACM Reference Format:
Jeff Bezanson, Jiahao Chen, Ben Chung, Stefan Karpinski, Viral B. Shah, Lionel Zoubritzky, and Jan Vitek. 2018.
Julia: Dynamism and Performance Reconciled by Design. Proc. ACM Program. Lang. 1, OOPSLA, Article 00
(2018), 23 pages. https://doi.org/00.0000/0000000

1 INTRODUCTION
Scientific programming has traditionally adopted one of two programming language families:
productivity languages (Python, MATLAB, R) for easy development, and performance languages (C,
C++, Fortran) for speed and a predictable mapping to hardware. Features of productivity languages
such as dynamic typing or garbage collection make exploratory and iterative development simple.
Thus, scientific applications often begin their lives in a productivity language. In many cases, as the
problem size and complexity outgrows what the initial implementation can handle, programmers
turn to performance languages. While this usually leads to improved performance, converting an
existing application (or some subset thereof) to a different language requires significant programmer
involvement; features previously handled by the language (e.g. memory management) now have
to be emulated by hand. As a result, porting software from a high level to a low level language is
often a daunting task.

Scientists have been trying to bridge the divide between performance and productivity for years.
One example is the ROOT data processing framework [Antcheva et al. 2015]. Confronted with
petabytes of data, the high energy physics community spent more than 20 years developing an
extension to C++, providing interpretive execution and reflection—typical features of productivity

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/00-ART00
https://doi.org/00.0000/0000000

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

https://doi.org/00.0000/0000000
https://doi.org/00.0000/0000000

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

00:2 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

languages—while retaining C++’s performance in critical portions of the code. Most scientific fields,
however, do not have the resources to build and maintain their own computational infrastructure.

The Julia programming language aims to decrease the gap between productivity and performance
languages. On one hand, it provides productivity features like dynamic typing, garbage collection,
and multiple dispatch. On the other, it has a type-specializing just-in-time compiler and lets
programmers control the layout of data structure in memory. Julia, therefore, promises scientific
programmers the ease of a productivity language at the speed of a performance language.� �

mutable struct Node
val
nxt

end

function insert(list, elem)
if list isa Void
return Node(elem, nothing)

elseif list.val > elem
return Node(elem, list)

end
list.nxt = insert(list.nxt, elem)
list

end� �
Fig. 1. Linked list

This promise is surprising. Dynamic languages like
Python or R typically suffer from at least an order of mag-
nitude slowdown over C, and often more. Fig. 1 illustrates
that Julia is indeed a dynamic language. It declares a Node

datatype containing two untyped fields, val and nxt, and
an untyped insert function that takes a sorted list and
performs an ordered insertion. While this code will be op-
timized by the Julia compiler, it is not going to run at full
speed without some additional programmer intervention.
The key to performance in Julia lies in the synergy

between language design, implementation techniques and
programming style. Julia’s design was carefully tailored
so that a very small team of language implementers could
create an efficient compiler. The key to this relative ease
is to leverage the combination of language features and programming idioms to reduce overhead,
but what language properties enable easy compilation to fast code?
Language design: Julia includes a number of features that are common to many productivity

languages, namely dynamic types, optional type annotations, reflection, dynamic code loading, and
garbage collection. A slightly less common feature is symmetric multiple dispatch [Bobrow et al.
1986]. In Julia a function can have multiple implementations, called methods, distinguished by the
type annotations added to parameters of the function. At run-time, a function call is dispatched to
the most specific method applicable to the types of the arguments. Julia’s type annotations can be
attached to datatype declarations as well, in which case they are checked whenever typed fields are
assigned to. Julia differentiate between concrete and abstract types: the former can be instantiated
while the latter can be extended by subtypes. This distinction is important for optimization.

Language implementation: Performance does not arise from great feats of compiler engineering:
Julia’s implementation is simpler than that of many dynamic languages. The Julia compiler has
three main optimizations that are performed on a high-level intermediate representation; native
code generation is delegated to the LLVM compiler infrastructure. The optimizations are (1)method
inlining which devirtualizes multi-dispatched calls and inline the call target; (2) object unboxing to
avoid heap allocation; and (3)method specializationwhere code is special cased to its actual argument
types. The compiler does not support the kind of speculative compilation and deoptimizations
common in dynamic language implementations, but supports dynamic code loading from the
interpreter and with eval().
The synergy between language design and implementation is in evidence in the interaction

between the three optimizations. Each call to a function that has a combination of concrete argument
types not observed before triggers specialization. A type inference algorithm uses the type of the
arguments (and if these are user-defined types, the declared type of fields) to discover the types
of variables in the specialized function. This enables both unboxing and inlining. The specialized
method is added to the function’s dispatch table so that future calls with the same argument types
can use the generated code.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Julia 00:3

Programming style: To assist the implementation, Julia programmers need to write idiomatic
code that can be compiled effectively. Programmers are keenly aware of the optimizations that the
compiler performs and write code that is shaped accordingly. For instance, adding type annotations
to fields of datatypes is viewed as good practice. Another good practice is to write methods that
are type stable. A method is type stable if, when it is specialized to a set of concrete types, type
inference can assign concrete types to all variables in the function. This property should hold for
all specializations of the same method. Type instability can stem from methods that can return
values of different types, or from assignment of different types to the same variable depending on
branches of the function.

This paper gives the first unified overview of the design of the language and its implementation,
paying particular attention to the features that play a role in achieving performance. This furthers
the work of Bezanson et al. [2017] by detailing the synergies at work through the entire compilation
pipeline between the design and the programming style of the language. Moreover we present
experimental results on performance and usage. More specifically, we give results obtained on a
benchmark suite of 10 small applications where Julia v0.6.2 performs between 0.9x and 6.1x from
optimized C code. On our benchmarks, Julia outperforms JavaScript and Python in all cases. Finally
we conduct a corpus analysis over a group of 50 popular projects hosted on GitHub to examine how
the features and underlying design choices of the language are used in practice. The corpus analysis
confirms that multiple dispatch and type annotations are widely used by Julia programmers. It also
shows that the corpus is mostly made up of type stable code.

2 JULIA IN ACTION
To introduce Julia, we consider an example. This code started as an attempt to replicate the R
language’s multi-dimensional summary function. This shortened version computes the sum of a
vector. Just like the R function, the Julia code is polymorphic over vectors of integer, float, boolean,
and complex values. Furthermore, since R supports missing values in every data type, we encode
NA s in Julia.1

Fig. 2 shows how to sum values. The syntax is straightforward. In this case, type annotations are
not needed for the compiler to optimize the code. Variables are lexically scoped; an initial assignment
defines them. Fig. 3 is the output of @code_native(vsum([1])), printing the x86 machine code for
vsum([1]). It is noteworthy that the generated machine code does not contain object allocation or
method invocation, nor does it invoke any language runtime components. The machine code is
similar to code one would expect to be emitted by a C compiler.
Type stability is key to performant Julia code, allowing the compiler to optimize using types.

An expression is type stable if, in a given type context, it always returns a value of the same type.
Function vsum(x) always returns a value that is either of the same type as the element type of x (for
floating point and complex vectors) or Int64. For the call vsum([1]), the method returns an Int64,
as its argument is of type Array{Int64,1}. When presented with such a call, the Julia compiler
specializes the method for that type. Specialization provides enough information to determine
that all values manipulated by the computation are of the same type, Int64. Thus, no boxing is
required; moreover, all calls are devirtualized and inlined. The @inboundsmacro elides array bounds
checking.
Type stability may require cooperation from the developer. Consider variable sum: its type has

to match the element type of x. In our case, sum must be appropriately initialized to support any
of the possible argument types integer, float, complex or boolean. To ensure type stability, the
programmer leverages dispatch and specialization with the definition of the function zero shown
1Julia v0.7 adds support for missing values.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

00:4 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

in Fig. 4. It dispatches on the type of its argument. If the argument is an array containing subtypes
of float, the function returns float 0.0. Similarly, if passed an array containing complex numbers,
the function returns a complex zero. In all other cases, it returns integer 0. All three methods are
trivially type stable, as they always return the same value for the same types.
Missing values also require attention. Each primitive type needs its own representation—yet

the code for checking whether a value is missing must remain type stable. This can be achieved
by leveraging dispatch. We add a function is_na(x) that returns true if x is missing. We select the
smallest value in each type to use as its missing value (obtained by calling typemin).

The solution outlined so far fails for booleans, as their minimum is false, which we can’t steal.
Fig. 5 shows how to add a new boolean data type, RBool. Like Julia’s boolean, RBool is represented
as an 8-bit value; but like R’s boolean, it has three values. Defining a new data type entails providing
a constructor and a conversion function. Since our data type has only three useful values, we
enumerate them as constants. We add a method to typemin to return NA. Finally, since the loop adds
booleans to integers, we need to extend addition to integer and RBool.

� �
function vsum(x)

sum = zero(x)
for i = 1:length(x)
@inbounds v = x[i]
if !is_na(v)
sum += v

end
end
sum

end� �
Fig. 2. Compute vector sum

push %rbp
mov %rsp, %rbp
mov (%rdi), %rcx
mov 8(%rdi), %rdx
xor %eax, %eax
test %rdx, %rdx
cmove %rax, %rdx
movl $1, %esi
movabs $0x8000000000000000, %r8
jmp L54
nopw %cs:(%rax,%rax)

L48: add %rdi, %rax
inc %rsi

L54: dec %rsi
nopl (%rax)

L64: cmp %rsi, %rdx
je L83
mov (%rcx,%rsi,8), %rdi
inc %rsi
cmp %r8, %rdi
je L64
jmp L48

L83: pop %rbp
ret
nopw %cs:(%rax,%rax)

Fig. 3. @code_native vsum([1]) (X86-64)

� �
zero(::Array{T}) where {T<:AbstractFloat} = 0.0
zero(::Array{T}) where {T<:Complex} = complex(0.0,0.0)
zero(x) = 0

is_na(x::T) where T = x == typemin(T)

typemin(::Type{Complex{T}}) where {T<:Real}
= Complex{T}(-NaN)� �

Fig. 4. zero yields the zero matching the element type, by de-
fault the integer 0. is_na checks for missing values encoded as
the smallest element of a type (returned by the builtin function
typemin). typemin is extended with a method to return the
smallest complex value

� �
primitive type RBool 8 end

RBool(x::UInt8) = reinterpret(RBool, x)
convert(::Type{T},x::RBool) where{T<:Real}

= T(reinterpret(UInt8,x))

const T = RBool(0x1)
const F = RBool(0x0)
const NA = RBool(0xff)

typemin(::Type{RBool}) = NA

+(x::Union{Int,RBool}, y::RBool) = Int(x) + Int(y)� �
Fig. 5. RBool is a an 8-bit primitive type representing boolean
values extended with a missing (NA. The constructor takes an
8-bit unsigned integer. Conversion allows to cast any number
into an RBool. A new method is added to typemin to return NA

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Julia 00:5

3 EVALUATING RELATIVE PERFORMANCE
Julia has to be fast to compete against other languages used for scientific computing. Competitors
like C, C++ and Fortran offer speed but require greater expertise from programmers; others like
Python, R, and MATLAB offer high-level abstractions at the expense of speed. Julia strives for a
compromise. This goal is a difficult one, however, as dynamic languages are notoriously difficult to
optimize. One additional issue to consider is that of language development time. Fig. 6 shows the
person-years invested in several implementations. These rough measures were obtained using the
projects’ commit histories: two commits made by

HotSpot
V8

PyPy
Julia

0 50 100 150 200

Person−year

Fig. 6. Time spent on implementations

the same developer in one week were counted
as one person-week of effort. This figure sug-
gests that performance comes at a substan-
tial cost in engineering. For example, V8 for
Javascript and HotSpot for Java have nearly
two centuries invested into their respective im-
plementations. Even PyPy, an academic project, has over one century of work. Given the difference
in implementation effort, Julia’s performance is surprising.
To estimate the languages’ relative performance, we selected 10 small programs for which

implementations in C, JavaScript, and Python are available in the programming language benchmark
game (PLBG) suite [Gouy 2018]. The PLBG suite consists of small but non-trivial benchmarks
which stress either computational or memory performance. We started with PLBG programs
from the Julia team, and fixed several performance anomalies. The benchmarks are written in an
idiomatic style, using the same algorithms as the C benchmarks. Their code is largely untyped,
with type annotations only appearing on structure fields. Over the 10 benchmark programs, 12
type annotations appear, all on structs and only in the nbody, binary_trees, and knucleotide. The
@inbounds macro eliding bounds checking is the only low-level optimization used, leveraged only
in revcomp. Using the PLBG methodology, we measured the size of the programs by removing
comments and duplicate whitespace characters, then performing the minimal GZip compression.
The combined size of all the benchmarks is 6.0 KB for Julia, 7.4 KB for JavaScript, 8.3 KB for Python
and 14.2 KB for C.

42 x
43 x
58 x

142 x
152 x
189 xmandelbrot

spectralnorm
nbody

fannkuch
binary_trees

fasta
knucleotide

revcomp
regex

pidigits

0 2 4 6 8 10 12 14 16 18 20 22 24

Slowdown

 Julia JavaScript Python

Fig. 7. Slowdown of Julia, JavaScript, and Python relative to C

Fig. 7 compares the performance of the four languages with the results normalized to the running
time of the C programs. Measurements were obtained using Julia v0.6.2, CPython 3.5.3, V8/Node.js
v8.11.1, and GCC 6.3.0 -O2 for C, running on Debian 9.4 on a Intel i7-950 at 3.07GHz with 10GB of
RAM. All benchmarks ran single threaded. No other optimization flags were used.
The results show Julia consistently outperforming Python and Javascript (with the exception

of spectralnorm). Julia is mostly within 2x of C. Slowdowns are likely due to memory operations.
Like other high level dynamically-typed programming languages, Julia relies on a garbage collector

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

00:6 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

to manage memory. It prohibits the kind of explicit memory management tricks that C allows. In
particular, it allocates structs on the heap. Stack allocation is only used in limited circumstances.
Moreover, Julia disallows pointer arithmetic.
Three programs fall outside of this range: two programs (knucleotide and mandelbrot) have

slowdowns greater than 2x over C, while one (regex) is faster than C. The knucleotide benchmark
was written for clarity over performance; it makes heavy use of abstractly-typed struct fields
(which cause the values they denote to be boxed). In the case of mandelbrot, the C code is manually
vectorized to compute the fractal image 8 pixels at a time; Julia’s implementation, however, computes
one pixel at a time. Finally, regex, which was within the margin of error of C, simply calls into the
same regex library C does.
Julia is fast on tiny benchmarks, but this may not be representative of real-world programs.

We lack the benchmarks to gauge Julia’s performance at scale. Some libraries have published
comparisons. JuMP, a large embedded domain specific language for mathematical optimization, is
one such library. JuMP converts numerous problem types (e.g. linear, integer linear, convex, and
nonlinear) into standard form for solvers. When compared to equivalent implementations in C++,
MATLAB, and Python, JuMP is within 2x of C++. For comparison, MATLAB libraries are between
4x and 18x slower than C++, while Python’s optimization frameworks are at least 70x slower than
C++ [Lubin and Dunning 2013]. This provides some evidence that Julia’s performance on small
benchmarks may be retained for larger programs.

4 THE JULIA PROGRAMMING LANGUAGE
The designers of Julia set out to develop a language specifically for the needs of scientific computa-
tion, and they chose a finely tuned set of features to support this use case. Antecedent languages,
like R and MATLAB, illustrate scientific programmers’ desire to write high-level scripts, which
motivated Julia’s adoption of an optionally typed surface language. Likewise, these languages drove
home the importance of flexibility: programmers regularly extend the core languages’ functionalities
to fit their needs. Julia provides this extensibility mechanism through multiple dispatch.

4.1 Values, types, and annotations
4.1.1 Values. Values can be either instances of primitive types, represented as sequences of bits,

or composite types, represented as a collection of fields holding values. Logically, every value is
tagged by its full type description; in practice, however, tags are often elided when they can be
inferred from context. Composite types are immutable by default, thus assignment to their fields is
not allowed. This restriction is lifted when the mutable keyword is used.

4.1.2 Types declarations. Programmers can declare three kinds of types: abstract types, primitive
types, and composite types. Types can be parametrized by bounded type variables and have a single
supertype. The type Any is the root of the type hierarchy, or the greatest supertype (top). Abstract
types cannot be instantiated; concrete types can. � �

abstract type Number end

abstract type Real <: Number end

primitive type Int64 <: Signed 64 end

struct Polar{T<:Real} <: Number
r::T
t::T

end� �

The code shown is an extract of Julia’s numeric tower.
Number is an abstract type with no declared supertype,
which means Any is its super type. Real is also abstract
but has Number as its super type. Int64 is a primitive
type with Signed as its supertype; it is represented in 64
bits. The struct Polar{T<:Real} is a subtype of Number
with two fields of type T bounded by Real. Run-time
checks ensure that values stored in these fields are of
the declared type. When types are omitted from field

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Julia 00:7

declarations, fields can hold values of Any type. Julia does not make a distinction between reference
and value types as Java does. Concrete types can be manipulated either by value or by reference; the
choice is left to the implementation. Abstract types, however, are always manipulated by reference.
It is noteworthy that composite types do not admit subtypes; therefore, types such as Polar are
final and cannot be extended with additional fields.

4.1.3 Type annotations. Julia offers a rich type annotation language to express constraints on
fields, parameters, local variables, and method return types. The :: operator ascribes a type to a
definition. The annotation language includes union types, written Union{A,...}; tuple types, writ-
ten Tuple{A,...}; iterated union types, written TExp where A<:T<:B; and singleton types, written
Type{T} or Val{V}. The distinguished type Union{}, with no argument, has no value and acts as the
bottom type.
Union types are abstract types which include, as values, all instances of their arguments. Thus,

Union{Integer,String} denotes the set of all integers and strings. Tuple types describe the types
of the elements that may be instantiated within a given tuple, along with their order. They are
parametrized, immutable types. Additionally, they are covariant in their parameters. The last
parameter of a tuple type may optionally be the special type Vararg, which denotes any number of
trailing elements.

Julia provides iterated union types to allow quantification over a range of possible instantiations.
For example, the denotation of a polar coordinate represented using a subtype T of real numbers is
Polar{T} where Union{}<:T<:Real. Each where clause introduces a single type variable. The type
application syntax T{A} requires T to be a where type, and substitutes A for the outermost type
variable in T. Type variable bounds can refer to outer type variables. For example,

Tuple{T,Array{S}} where S<:AbstractArray{T} where T<:Real

refers to 2-tuples whose first element is some Real, and whose second element is an Array whose
element type is the type of the first tuple element, T.

A singleton type is a special kind of abstract type, Type{T}, whose only instance is the object T.

4.1.4 Subtyping. In Julia, the subtyping relation between types, written <:, is used in run-time
casts, as well as method dispatch. Semantic subtyping partially influenced Julia’s subtyping [Frisch
et al. 2002], but practical considerations caused Julia to evolve in a unique direction. Julia has an
original combination of nominal subtyping, union types, iterated union types, covariant and invariant
constructors, and singleton types, as well as the diagonal rule. Parametric types are invariant in
their parameters because of Julia’s memory representation of values. Arrays of dissimilar values
box each of their arguments, for consistent element size, under type Array{Any}. However, if all
the values are statically determined to be of the same kind, they are stored inside of the array
itself because their memory layout is known. Tuple types represent both tuples and function
arguments. They are covariant because of this latter use, which allows Julia to compute dispatch
using subtyping of tuples. Subtyping of union types is asymmetrical but intuitive. Whenever a
union type appears on the left-hand side of a judgment, as in Union{T1,...} <: T, all the types
T1,... must be subtypes of T. In contrast, if a union type appears on the right-hand side, as in
T <:Union{T1,...}, then only one type, Ti, needs to be a supertype of T. Covariant tuples are
distributive with respect to unions, so Tuple{Union{A,B},C}<:Union{Tuple{A,C},Tuple{B,C}}. The
iterated union construct Texp where A<:T<:B, as with union types, must have either a forall or
an exist semantics, according to whether the union appears on the left or right of a subtyping
judgment. Finally, the diagonal rule states that if a variable occurs more than once in covariant
position, it is restricted to ranging over only concrete types. For example, Tuple{T,T} where T can
be seen as Union{Tuple{Int8,Int8},Tuple{Int16,Int16},...}, where T ranges over all concrete

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

00:8 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

types. The details of the subtyping algorithm are intricate and the interactions between its features
can be surprising, we describe those in a companion paper [Nardelli et al. 2018].

4.1.5 Dynamically-checked type assertions. Type annotations in method arguments are guaran-
teed by the language semantics. However, Julia allows the insertion of type annotations elsewhere
in the program that act as type assertions. For example, to guarantee that variable x has type Int64 in
the remainder of the program, the type assertion x::Int64 =... can be inserted into its declaration.
Likewise, functions can assert a return type: the function f()::Int =... is one example. Composite
type fields can also be annotated. These type annotations check the type of the expression’s or
field’s value. If it is not a subtype of the declared type, Julia will try to convert it to the declared
type. If this conversion fails, Julia will throw an exception. As a result, while these type annotations
look like those in statically typed languages, their semantics are slightly different.

4.2 Multiple dispatch
Julia uses multiple dispatch extensively, allowing extension of functionality bymeans of overloading.
Multiple dispatch uses every argument type to figure out the target of each function call. In Julia,
each function (for example +) can consist of an arbitrarily large number of methods (in the case of +,
180). Each of these methods declares what types it can handle, and Julia will dispatch to whichever
method is most specific for a given function call. As hinted at with addition, multiple dispatch is
omnipresent. Virtually every operation in Julia involves dispatch. New methods can then be added
to existing functions, extending them to work with new types.

� �
struct Dual{T}
re::T
dx::T

end

function Base.:(+)(a::Dual{T},b::Dual{T}) where T
Dual{T}(a.re+b.re, a.dx+b.dx)

end
function Base.:(*)(a::Dual{T},b::Dual{T}) where T
Dual{T}(a.re*b.re, a.dx*b.re+b.dx*a.re)

end
function Base.:(/)(a::Dual{T},b::Dual{T}) where T
Dual{T}(a.re/b.re, (a.dx*b.re-a.re*b.dx)/(b.re*b.re))

end� �

4.2.1 Example. Libraries can add their
own implementations of basic math oper-
ators. For example, forward differentiation
is a technique that allows derivatives to be
calculated for arbitrary programs. It is im-
plemented by passing both a value and its
derivative through a program. In many lan-
guages, the code being differentiated would
have to be aware of forward differentiation
as the dual numbers need new definitions
of arithmetic. Multiple dispatch allows to
implement a library that works for existing
functions, as we can simply extend arithmetic operators. Suppose we want to compute the deriva-
tive of f(a,b)=a*b/(b+b*a+b*b) about a, with a =1 and b =3. By overloading arithmetic, the same
operators found in f work on dual numbers; thus, taking the derivative of f is as simple as calling f

with dual numbers: f(Dual(1.0,1.0),Dual(3.0,0.0)).dx yields 0.16.

4.2.2 Semantics. Dispatching on a function f for a call with argument typeT consists in picking
a methodm from all the methods of f. The selection filters out methods whose types are not a
supertype of T and takes the method whose type T ′ is the most specific of the remaining ones.
In contrast to single dispatch, every position in the tuples T and T ′ have the same role—there is
no single receiver position that takes precedence. Specificity is required to disambiguate between
two or more methods which are all supertypes of the argument type. It extends subtyping with
extra rules, allowing comparison of dissimilar types as well. The specificity rules are defined by
the implementation and lack a formal semantics. In general, A is more specific than B if A != B and
either A <: B or one of a number of special cases hold:

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Julia 00:9

(a) A = T{P} and B = S{Q}, and there exist values of P and Q such that T <: S. This allows us to
conclude that Array{T} where T is more specific than AbstractArray{String}.

(b) Let C be the non-empty meet (approximate intersection) of A and B, and C is more specific
than B and B is not more specific than A. This is used for union types: Union{Int32,String} is
more specific than Number because the meet, Int32, is clearly more specific than Number.

(c) A and B are tuple types, A ends with a Vararg type and A would be more specific than B

if its Vararg was expanded to give it the same number of elements as B. This tells us that
Tuple{Int32,Vararg{Int32}} is more specific than Tuple{Number,Int32,Int32}.

(d) A and B have parameters and compatible structures, A provides a consistent assignment of
non-Any types to replace B’s type variables, regardless of the diagonal rule. This means that
Tuple{Int,Number,Number} is more specific than Tuple{T,S,S} where {T,S<:T}.

(e) A and B have parameters and compatible structures and A’s parameters are equal or more
specific than B’s. As a consequence, Tuple{Array{T} where T,Number} is more specific than
Tuple{AbstractArray{String},Number}.

� �
ntuple(f, ::Type{Val{0}}) = (@_inline_meta; ())
ntuple(f, ::Type{Val{1}}) = (@_inline_meta; (f(1),))
ntuple(f, ::Type{Val{2}}) = (@_inline_meta; (f(1), f(2)))� �

Onemore interesting feature is dispatch
on type objects and on primitive values.
For example, the Base library’s nutple
function is defined as a set of methods
dispatching on the value of their second
argument. Thus a call to ntuple(id,Val{2}) yields (1,2) where id is the identity function. The
@_inline_meta macro is used to force inling.

4.3 Metaprogramming
Julia provides various features for defining functions at compile-time and run-time and has a
particular definition of visibility for these definitions.

� �
macro assert(ex, msgs...)
msg_body = isempty(msgs) ? ex : msgs[1]
msg = string(msg_body)
return :($ex ? nothing

: throw(AssertionError($msg)))
end� �

4.3.1 Macros. Macros provide a way to generate
code in the final body of a program. The use of macros
is intended to reduce the need for calls to eval() that
are so frequent in other dynamic languages. A macro
maps a tuple of arguments to an expression which
is compiled directly. Macro arguments may include
expressions, literal values, and symbols. The example
on the right shows the definition of the assert macro which either returns nothing if the assertion
is true or throws an exception with an optional message provided by the user. The :(...) syntax
denotes quotation, that is the creation of an expression. Within it, values can be interpolated: $x
will be replaced by the value of x in the expression.

4.3.2 Reflection. Julia provides methods for run-time introspection. The names of fields may
be interrogated using fieldnames(). The type of each field is stored in the types field of each
composite value. Types are themselves represented as a structure called DataType. The direct
subtypes of any DataTypemay be listed using subtypes(). The internal representation of a DataType
is important when interfacing with C code and several functions are available to inspect these
details. isbits(T::DataType) returns true if T is stored with C-compatible alignment. The builtin
function fieldoffset(T::DataType,i::Integer) returns the offset for field i relative to the start of
the type. The methods of any function may be listed using methods(). The method dispatch table
may be searched for methods accepting a given type using methodswith().

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

00:10 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

More powerful is the eval() function which takes an expression object and evaluates it in the
global scope of the current module. For example eval(:(1+2)) will take the expression :(1+2) and
evaluate it yielding the expected result. When combined with an invocation to the parser, any
arbitrary string can be evaluated, so for instance eval(parse("function id(x) x end")) adds an
identity method. One important difference from languages such as JavaScript is that eval() does
not have access to the current scope. This is crucial for optimizations as it means that local variables� �

for op in (:+, :*, :&, :|)
eval(:($op(a,b,c) = $op($op(a,b),c)))

end� �
are protected from interference. The eval() function
is sometimes used as part of code generation. Here
for example is a generalization of some of the basic
binary operators to three arguments. This generates
four new methods of three arguments each.

4.3.3 Epochs. The Julia implementation keeps a world age (or epoch) counter. The epoch is a
monotonically increasing value that can be associated to each method definition. When a method
is compiled, it is assigned a minimum world age, set to the current epoch, and a maximum world
age, set to typemax(Int). By default, a method is visible only if the current epoch is superior to its
minimum world age. This prevents method redefinitions (through eval for instance) from affecting
the scope of currently invoked methods. However, when a method is redefined, the maximumworld
age of all its callers gets capped at the current epoch. This in turn triggers a lazy recompilation of
the callers at their next invocation. As a consequence, a method always invokes its callee with its
latest version defined at the compile time of the caller. When the absolute latest (independent of
compile epoch) version of a function is needed, programmers can use Base.invokelatest(fun,args)
to bypass this mechanism; however, these calls cannot be statically optimized by the compiler.

4.4 Discussion
The design of Julia makes a number of compromises, and we discuss some of the implications here.� �

abstract type AbsPt end
struct Pt <: AbsPt
x::Int
y::Int

end

abstract type AbsColPt <: AbsPt end
struct ColPt <: AbsColPt
x::Int
y::Int
c::String

end

copy(p::Pt, dx, dy) = Pt(p.x+dx, p.y+dy)
copy(p::ColPt, dx, dy) =

ColPt(p.x+dx, p.y+dy, p.c)

move(p::AbsPt, dx, dy) = copy(p, dx, dy)� �

Object oriented programming. Julia’s design does
not support the class-based object oriented program-
ming style familiar from Java. Julia lacks the encapsu-
lation that is the default in languages going back all
the way to Smalltalk: all fields of a struct are public
and can be accessed freely. Moreover, there is no way
to extend a point class Pt with a color field as one
would in Java; in Julia the user must plan ahead for
extension and provide a class AbsPt. Each “class” in
that programming style is a pair of an abstract and a
concrete class. One can define methods that work on
abstract classes such as the move method which takes
any point and new coordinates. The copy methods are
specific to each concrete “class” as they must create
instances. As first discussed by Chung and Li [2017], the unfortunate side effect of the untyped
nature of Julia and of the fact that abstract classes have neither fields nor methods is that there is
no documentation to remind the programmer that a copy method is needed for ColPt. This has to
be discovered by inspection of the code.

Functional programming. Julia supports several functional programming idioms—higher order
functions, immutable-by-default values—but has no arrow types. Instead, the language ascribes
functions to have incomparable nominal types without argument or return type information. Thus,

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Julia 00:11

many traditional typed idioms are impractical, and it is impossible to dispatch on function types.
However, nominal types do allow dispatch on methods passed as arguments, enabling a different
set of patterns. For example, the implementation of reduce delegates to a special-purpose function
reduce_empty which, given a function and list type, determines the value corresponding to the
empty list. If reducing with +, the natural empty reduction value is 0, for the correct 0. Capturing
this, reduce_empty has the following definition: reduce_empty(::typeof(+),T)=zero(T) . In this
case, reduce_empty dispatches the nominal + function type, then returns the zero element for T.

Gradual typing. The goal of gradual type systems is to allow dynamically typed programs to
be extended with type annotations after the fact [Siek 2006; Tobin-Hochstadt and Felleisen 2006].
Julia’s type system superficially appears to fit the bill; programs can start untyped, and, step by
step, end up fully decorated with type annotations. But there is a fundamental difference. In a
gradually typed language, a call to a function f(t::T), such as f(x), will be statically checked to
ensure that the variable x’s declared type matches the argument’s type T. In Julia, on the other hand,
a call to f(x) will not be checked statically; if x does not have type T, then Julia throws a runtime
error. Another difference is that, in Julia, a variable, parameter, or field annotated with type T will
always hold a value of type T. Gradual type systems only guarantee that values will act like type T,
wrapping untyped values with contracts to ensure they they are indistinguishable [Tobin-Hochstadt
and Felleisen 2008]. If a gradually-typed program manipulates a value erroneously, that error will
be flagged and blame will be assigned to the part of the program that failed to respect the declared
types. Similarly, Julia departs from optional type systems, like Hack [Facebook 2016] or Typescript
[Microsoft 2016]. These optional type systems provide no guarantee whatsoever about what values
a variable of type T actually holds. Julia is closest in spirit to Thorn [Bloom et al. 2009]. The two
languages share a nominal subtype system with tag checks on field assignment and method calls.
In both systems, a variable of type T will only ever have values of type T. However, Julia differs
substantially from Thorn, as it lacks a static type system and adds multiple dispatch.

5 IMPLEMENTING JULIA

Julia Source

Julia AST

LLVM IR

Julia IR

Executable

Parse

Lower

Translate

Generate

1) Specialize
2) Infer types
3) Inline
4) Unbox

LLVM Opts

Fig. 8. Julia JIT compiler

Julia is engineered to generate efficient native code at run-time.
The Julia v0.6.2 compiler is an optimizing just-in-time compiler
structured in three phases: source code is first parsed into abstract
syntax trees; those trees are then lowered into an intermediate
representation that is used for Julia level optimizations; once those
optimizations are complete, the code is translated into LLVM IR
and machine code is generated by LLVM [Lattner and Adve 2004].
Fig. 8 is a high level overview of the compiler pipeline. With

the exception of the standard library which is pre-compiled, all
Julia code executed by a running program is compiled on demand.
The compiler is relatively simple: it is a method-based JIT without
compilation tiers; once methods are compiled they are not changed
as Julia does not support deoptimization with on-stack replacement.
Memory is managed by a stop-the-world, non-moving, mark-

and-sweep garbage collector. The mark phase can be executed in parallel. The collector has a single
old generation for objects that survive a number of cycles. It uses a shadow stack to record pointers
in order to be precise.

Since v0.5, Julia natively supports multi-threading but the feature is still labeled as “experimental”.
Parallel loops use the Threads.@threadsmacro which annotates for loops that are to run in a multi-
threaded region. Other part of the multi-threaded API are still in flux. An alternative to Julia native

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

00:12 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

threading is the ParallelAccelerator system of Anderson et al. [2017] which generates OpenMP
code on the fly for parallel kernels. The system crucially depends on type stability—code that is not
type stable will execute single threaded.

Language files code
Julia 296 115,252
C 79 44,930
C++ 21 18,491
Scheme 11 6,369
C/C++ Header 44 6,205
Lisp 6 1,901
make 7 684
Bourne Shell 2 85
Assembly 4 74

470 193,991

Fig. 9. Source files

Fig. 9 gives an overview of the implementation of Julia v0.6.2. The
standard library, Core, Base and a few other modules, accounts for
most of the use of Julia in Julia’s implementation. The middle-end
is written in C; C++ is used for LLVM IR code generation. Finally,
Scheme and Lisp are used for the front end. External dependencies
such as LLVM, which is used as back end, do not participate to this
figure.

5.1 Method specialization
Julia’s compilation strategy is built around runtime type informa-
tion. Both type inference and JIT compilation will happen every
time a method is called with a new tuple of argument types. In
effect, by dynamically inferring function types, Julia is able to take
a dynamically typed program and monomophize it. Every time a method is called with a new
tuple of argument types, it is specialized by the runtime for these types. Optimizing methods at
invocation time, rather than ahead of time, provides the JIT with key pieces of information: the
memory layout of all arguments are known, allowing for unboxing and direct field access.
Devirtualization is the process of replacing virtual function invocations with invocations of a

single specialization. Dispatching on an argument is a needless effort if it can be statically shown
that the argument will only ever have a single type; directly calling the method specialized for the
known type is much more efficient. As a result, devirtualization can reduce dispatch overhead and
enable inlining, discussed later.

This compilation process is rather slow (due to LLVM), however, and its results are cached. Once
compiled, method specializations are never discarded. As a result, methods are only compiled
the first time they are called with a new type. The next time it is called with the same type, the
specialized version is called instead and execution is fast. This process converges quickly as long as
functions are only ever called with a limited number of types. Type stability ensures this condition.
Compiling for every new function argument does create a new pathology. If a function gets

called only a few times under each of many argument type tuples, then virtually every invocation
will incur the substantial cost of specialization. The language runtime cannot solve every instance
of this problem, as programs that generate an infinite number of new call signatures, an extreme
version of type instability, are easy to write. However, Julia makes several decisions that simplify
the process of writing type stable functions in practical applications.
The biggest real issue would arise from argument with potentially many types. Julia allows

tuple types to contain a Vararg component, which can be expanded infinitely. To avoid unbounded
numbers of specializations for functions with varargs arguments, Julia treats these as having
type Any. Likewise, in Julia, each function value has its own type, so methods that take function
arguments could exhibit this pathology. Yet, specializing over the type of the function can be
useful in order to inline it. The selected heuristic consists in specializing if the function is called in
the method body, and treating it as having type Any otherwise. Other heuristics are involved for
arguments having type Type for similar reasons.

The language runtime has little recourse for type unstable code beyond generating a large number
of specializations. As a last resort, Julia (0.7) programmers can use the @nospecialize annotation to
prevent specialization on a specific argument if they expect it to not be type stable.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Julia 00:13

5.2 Type inference
Type inference enables many of Julia’s key optimizations. It runs after specializing and is used for
inlining and unboxing. Julia uses a set constraint based type inference system with constraints
arising from return values, method dereferences, and argument types. Type requirements need to
be satisfied at function call sites and field assignments. The system propagates constraints forward
to satisfy requirements, inferring the types for intermediate values along the way.� �

function f(a,b)
c = a+b
d = c/2.0
return d

end� �
� �
function f(a::Int,b::Int)
c = a+b::Int
d = c/2.0::Float64
return d

end => Float64� �
Fig. 10. A simple example of type inference

Given the concrete types of all function argu-
ments, intraprocedural type inference propagates
types forward into the method body. An example
is shown in Fig. 10. When f is called with a pair of
integers, type inference finds that a+b returns an
integer; therefore c is likewise an integer. From
this, it follows that d is a float and so is the return
type of the method. Note that this explanation
relies on knowing the return type of +. Since addition could be overloaded, it is necessary to be able
to infer the return types of arbitrary methods. Return types may vary depending on argument type,
and previous inference results may not cover the current case. Therefore, when a new function is
called, inference on the caller must be suspended and continue on the called function to figure out
the return type of the call. � �

function a()
return b(3)+1

end
function b(num)
return num+2

end� �

� �
function a()
return b(3)+1::Int

end => Int
function b(num::Int)
return num+2::Int

end => Int� �
Fig. 11. Simple interprocedural type inference

Interprocedural type inference is simple for
non-recursive methods as seen in Fig. 11: abstract
execution flows to the called method and the re-
turn type is computed. For recursive methods cy-
cle elimination is performed. Once a cycle is iden-
tified, it is executed within the abstract interpreter
until it reaches convergence. The cycle is then con-
tracted into a single monolithic function from the
perspective of type inference. More challenging
are methods whose argument or return types can grow indefinitely depending on its arguments.
To avoid this, Julia limits the size of the inferred types to an arbitrary bound. In this manner, the
set of possible types is finite and therefore termination of the abstract interpretation system is
guaranteed.2

5.3 Method inlining
Inlining replaces a function call by the body of the called function. In Julia, it can be realized in a
very efficient way because of its synergy with specialization and type inference. Indeed, if the body
of a method is type stable, then the internal calls can be inlined. Conversely, inlining can help type
inference because it gives additional context. For instance, inlined code can avoid branches that can
be eliminated as dead code, which allows in turn to propagate more precise type information. Yet,
the memory cost incurred by inlining can be sometimes prohibitive; moreover it requires additional
compilation time. As a consequence, inlining is bounded by a number of pragmatic heuristics.

5.4 Object unboxing
Since Julia is dynamic, a variable may hold values of many types. As a consequence, in the general
case, values are boxed, allocated on the heap with a tag that specifies their type. Unboxing is the
optimization that consists in manipulating values directly. This optimization is made possible by

2In Julia v0.7 this limitation is replaced by a more complex heuristic to determine whether the type is growing in a call cycle.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

00:14 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

a combination of design choices. First, since concrete types are final, a concrete type specifies
both the size of a value and its layout. This would not be the case in Java (due to subtyping) or
TypeScript (due to structural subtyping). In addition, Julia does not have a null value; if it did, there
would be need for an extra tag. As a consequence, values of plain data types can always be stored
unboxed. Repeated boxing and unboxing can be expensive Unboxing can also be impossible to
realize although the type information is present, in particular for recursive data structures. As with
inlining, heuristics are thus used to determine when to perform this optimization.

6 JULIA IN PRACTICE
In order to understand how programmers use the language, we analyzed a corpus of 50 packages
hosted on GitHub. Choosing packages over programs was a necessity: no central repository exists
of Julia programs. Packages were included based on GitHub stars. Selected packages also had to
pass their own test suites. Additionally, we analyzed Julia’s standard library.

6.1 Typeful programming
Julia is a language where types are entirely optional. Yet, knowing them is highly profitable at
compile time since it enables major optimizations. Users are thus encouraged to program in a
typeful style where code is, as much as possible, type stable. To what extent is this rule followed?

0

200

400

600

M
et

ho
ds

0

25

50

75

100

C
ub

at
ur

e
R

D
at

as
et

s
Ls

qF
it

B
ac

kp
ro

pN
eu

ra
lN

et
P

ar
am

et
er

s
Ye

pp
p

M
ar

ke
tT

ec
hn

ic
al

s
N

M
F

M
at

ch
D

oc
O

pt
G

LM
N

et
N

Lo
pt

S
im

Ju
lia

S
ta

n
V

or
on

oi
D

el
au

na
y

M
us

ta
ch

e
M

ux
D

at
aS

tr
ea

m
s

F
or

m
at

tin
g

C
al

cu
lu

s
P

la
yg

ro
un

d
P

O
M

D
P

s
R

eq
ue

st
s

M
at

hP
ro

gB
as

e
M

ac
ro

To
ol

s
U

ni
co

de
P

lo
ts

Ite
ra

to
rs

D
is

ta
nc

es
G

itH
ub

M
LB

as
e

A
rg

P
ar

se
W

av
el

et
s

Li
nt

La
zy

F
or

w
ar

dD
iff

M
ul

tiv
ar

ia
te

S
ta

ts
IJ

ul
ia

Ite
ra

tiv
eS

ol
ve

rs
M

ea
su

re
m

en
ts

Te
xt

A
na

ly
si

s
H

yp
ot

he
si

sT
es

ts
G

R
H

D
F

5
B

ay
es

N
et

s
G

ra
ph

s
D

ag
ge

r
K

ne
t

G
au

ss
ia

nP
ro

ce
ss

es
Li

gh
tG

ra
ph

s
K

la
ra

Ty
pe

s

Fig. 12. Number of methods and types by package

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Julia 00:15

676

45
233

520
337

33

4983

0
10

00
20

00
30

00
40

00
50

00

0%

1%
−2

0%

20
%

−4
0%

40
%

−6
0%

60
%

−8
0%

80
%

−9
9%

10
0%

N
um

be
r

of
 m

et
ho

ds

Fig. 13. Methods by percentage of typed arguments

6.1.1 Type annotations. Fig. 12 gives the
number of methods and types defined in each
packages (excluding Base). We analyzed our
corpus after it was loaded into Julia to ensure
that generated methods could be captured; we
preformed structural analysis of parsed ASTs,
allowing us to measure only methods and types
written by human developers. In total, the cor-
pus includes 792 type definitions and 7,018
methods. The median number of types and
methods per package is 9 and 104, respectively.
Klara, a library for Markov chain Monte Carlo
inference, is the largest package by both num-
ber of types and methods with 102 and 599, re-
spectively. Three packages, MarketTechnicals,
RDatasets, and Yeppp, define zero types; while Cubature defines just 3 methods, the fewest in
the corpus. Clearly, Julia users define many types and functions. However, the level of dynamism
remains a question.

Fig. 13 shows the distribution of type annotations on arguments of method definitions. 0% means
all arguments are untyped (Any), while 100% means that all arguments are non-Any. An impressive
4,983 (or 62%) of methods are fully type-annotated.

Despite having the opportunity to write untyped methods, library developers define mostly
typed methods and only a few untyped and partially typed methods. This behavior may not reflect
that of the average user of Julia, though, because library developers are biased toward writing
optimized code; and in Julia, this requires precisely controlling the types.

10

1000

Package

C
al

ls
ite

s

1 target 2+ targets

Fig. 14. Targets per callsite per package

6.1.2 Type stability. Type inference can
only attribute concrete types to variables if
these variables can be statically determined to
be of that type. Type stability is key to devir-
tualizing methods and inlining them as well as
to unboxing. We capture the presence of type
instability at run time by dynamic analysis on
the test suites of our corpus. Each function call
was recorded, along with the tuple of types of
its arguments, the called method, and the call
site. We filtered out calls to anonymous and
compiler-generated functions to focus on func-
tions defined by humans.

Fig. 14 compares, for each package, the num-
ber of call sites where all the calls targeted only
one specialized method to those that call two
and more. The y-axis is shown in log scale. On
average, 92% of call sites target a single spe-
cialized method. Code is thus in general type
stable, which agrees with the assumption that
programmers attempt to write type stable code.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

00:16 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

6.2 Multiple dispatch
Multiple dispatch is the most prominent features of Julia’s design. Its synergy with specialization
is crucial to understand the performance of the language and its ability to inline devirtualize
and inline efficiently. Thus, how is multiple dispatch used from a programmer’s perspective?
Moreover, a promise of multiple dispatch is that it can be used to extend existing behavior with new
implementations. Two questions arise: how much do Julia libraries extend existing functionality,
and what functionality do they extend?

6.2.1 Dispatch metrics. The standard means by which to compare usage of multiple dispatch is
by Muschevici et al. [2008]. We focus on the dispatch ratio (DR), the number of methods defined per
function, and the degree of dispatch (DoD), the average number of argument positions needed to
select a concrete method. These metrics are computed statically, and have no dynamic component.

Language Functions DR DoD
Dylan (OpenDylan) 2143 2.51 0.39
CLOS (McCLIM) 2222 2.43 0.78
Cecil (Vortex) 6541 2.33 0.36
Diesel (Whirlwind) 5737 2.07 0.32
Nice (NiceC) 1184 1.36 0.15
Julia 1292 4.89 0.85

Fig. 15. Muschevici et al. metrics

Fig. 15 compares Julia to other languages with
multiple dispatch, using data fromMuschevici et al.
[2008]. The data for Julia was collected on all the
functions exported by the Base library. Julia shows
the highest value of dispatch ratio with an average
of almost 5 methods defined per function. This is
in part due to the presence of a small number of
functions with an extremely high number of over-
loads: convert for instance, which is used to to
convert a value to a given type, has 699 overloads.

0

20

40

60

80

S
of

t

0

1

2

3

4

B
ac

kp
ro

pN
eu

ra
lN

et
V

or
on

oi
D

el
au

na
y

Ite
ra

to
rs

R
D

at
as

et
s

Li
nt

IJ
ul

ia
A

rg
P

ar
se

S
im

Ju
lia G
R

N
M

F
La

zy
C

ub
at

ur
e

M
ar

ke
tT

ec
hn

ic
al

s
M

ac
ro

To
ol

s
S

ta
n

P
la

yg
ro

un
d

Ye
pp

p
N

Lo
pt

Ite
ra

tiv
eS

ol
ve

rs
F

or
m

at
tin

g
H

D
F

5
M

ul
tiv

ar
ia

te
S

ta
ts

M
ux

D
oc

O
pt

D
ag

ge
r

M
us

ta
ch

e
Te

xt
A

na
ly

si
s

P
O

M
D

P
s

P
ar

am
et

er
s

M
ea

su
re

m
en

ts
Ls

qF
it

R
eq

ue
st

s
Li

gh
tG

ra
ph

s
B

ay
es

N
et

s
M

LB
as

e
M

at
ch

F
or

w
ar

dD
iff

G
ra

ph
s

U
ni

co
de

P
lo

ts
G

itH
ub

W
av

el
et

s
M

at
hP

ro
gB

as
e

K
ne

t
D

at
aS

tr
ea

m
s

G
LM

N
et

D
is

ta
nc

es
K

la
ra

H
yp

ot
he

si
sT

es
ts

G
au

ss
ia

nP
ro

ce
ss

es
C

al
cu

lu
s

S
tr

ic
t

Fig. 16. Dispatch ratio with soft vs. strict elimination

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Julia 00:17

But even without those outliers, 73% of the functions have at least twomethods, which demonstrates
the importance of overloading in the standard library. The degree of dispatch is also the highest,
which shows that the full extent of multiple dispatch is used, and not only overloading which is a
consequence of it.
These metrics assume a single monolithic code base. However, when comparing multiple pro-

grams that import shared libraries (e.g. Core and Base), the question is how to avoid double counting
libraries? Since methods of the same function can be defined in different packages, which methods
should be kept? Two answers are possible. First, every method reachable from an imported module,
and which belongs to a function having at least one method defined in the target package. We call
this “soft elimination,” as it precludes definitions unreachable from the package, but includes some
imported definitions. Second, we could say that only functions that have all their methods defined
within the target package package count. We call this “strict elimination.”

10

1000

0 2 4 6

Arguments Dispatched On

F
un

ct
io

ns

Fig. 17. Number of arguments by dispatched on

Fig. 16 shows the dispatch ratio across our
corpus using soft and strict elimination. Despite
being nominally the same metric, the dispatch
ratios are not correlated. At issue is the nature
of imports. If a package overloads + with a sin-
gle newmethod, then strict elimination will not
count it. However, soft elimination will count it
along with the 180 methods from the standard
library. If the package under consideration only
has a few functions, its dispatch ratio could
be greater than 20—four times higher than the
maximum observed with strict elimination—
despite its small size.
Figure 17 gives the total number of argu-

ments dispatched on per function. It is the cu-
mulative result of all the package after strict
elimination, ensuring that no function has been duplicated. The functions without any argument
were filtered out because of their trivial dispatch. 79% of the functions can still be dispatched on 0
argument, which shows that the arity of the function is in most of the cases enough to determine
the corresponding method.

0

2

4

6

8

10

12

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of overloaded functions

N
um

be
r

of
 p

ac
ka

ge
s

Fig. 18. Packages by % of overloaded functions

6.2.2 Overloading. Fig. 18 examines how
multiple dispatch is used to extend existing
functionality. We use the term external over-
loading to mean that a package adds a method
to a function defined in a library. Packages are
binned based on the percentage of functions
that they overload versus define. Packages with
only external overloading are at 100%, while
packages that do not use external overloading would be in the 0% bin. Many packages are defined
without extensive use of external overloading. For 28 out of 50 packages, fewer than 30% of the
functions they define are overloads. However, the distribution of overloading has a long tail, with a
few libraries relying on overloads heavily. The Measurements package has the highest proportion
of overloads, with 147 overloads out of a total of 161 methods (91%). This is justified by the purpose
of Measurements: it propagates errors throughout other operations, which is done by extending
existing functions.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

00:18 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

Copy

Hashing

Initialization

Conversion

Comparison

Other

IO

Collection

Math

0 100 200 300 400

Number of overloadings

C
at

eg
or

y

Fig. 19. Function overloads by category

To address the question
of what is overloaded, we
manually categorized the
top 20th quantile of over-
loaded functions (128 out of
641) into 9 groups. Fig. 19
depicts how many times
functions from each group
is overloaded. Multiple dis-
patch is used heavily to
overload mathematical op-
erators, like addition or
trigonometric functions. Libraries overload existing operators to work with their own types,
providing natural interfaces and interoperability with existing code. Examples include Calculus,
which overloads arithmetic to allow symbolic expressions; and ForwardDiff, which can compute
numerical derivatives of existing code using dual numbers that act just like normal values. Col-
lection functions also are widely overloaded. Many libraries have collection-like objects, and by
overloading these methods they can use their collections where Julia expects any abstract collec-
tion. However, Julia’s interfaces are only defined by documentation, as a result of its dynamic
design. The AbstractArray interface can be extended by any struct, and it is only suggested in
the documentation that implementations should overload the appropriate methods. Use cases for
math and collection extension are easy to come by, so their prevalence is unsurprising. However,
the lack of overloads in other categories illustrates some surprising points. For example, the large
number of IO, math, and collection overloads (which implement variations on tostring) suggest a
preponderance of new types. However, few overloads to compare, convert, or copy are provided.

6.3 Specializations
Figure 20 gives the number of specializations per method recorded dynamically on our corpus. The
data uses strict eliminations, so that the results from different packages can be summed without

●

●

● ●

● ●

●

●

●●

●

●●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●

●

●

●●

●

●●●●● ●●

●

●

●

●

●●

●

●

●

● ● ●

10

1000

1 10 100

specializations

m
et

ho
ds

Fig. 20. Number of specializations per method

10

1000

1 2 3 4

Applicable Methods

S
ig

na
tu

re
s

Fig. 21. Applicable methods per call signature

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Julia 00:19

duplicate functions. The distribution has a heavy tail, which shows that programmers actually
write methods that can be very polymorphic. Note that polymorphism is not in contradiction with
type stability, since a method called with different tuples of argument types across different call
sites can be type stable for each of its call sites. Conversely, 46% of the methods have only been
specialized once after running the tests. Many methods are thus used monomorphically: this hints
that a number of methods may have a type specification that prevent polymorphism, which means
that programmers tend to think of the concrete types they want their methods applied to, rather
than only an abstract type specification.

Figure 21 corroborates this hypothesis. It represents the number of applicable methods per call
signature. A method is applicable if the tuple of types corresponding to the requirements for its
arguments is a supertype of that of the actual call. This data is collected on dynamic traces for
functions with at least two methods. 93% of the signatures can only dispatch to one method, which
strongly suggests that methods tend to be written for disjoint type signatures. As a consequence it
shows that the specificity rules, used to determine which method to call, boil down to subtyping in
the vast majority of cases.

6.4 Impact on performance
Fig. 22 illustrates the impact on performance of LLVM optimizations, type inference and devirtual-
ization. By default Julia uses LLVM at optimization level O2 . Switching off all LLVM optimizations
generates code between 1.1x and 7.1x slower. Turning off type inference means that method are
specialized correctly but all internal operations will be performed on values of type Any . Functions
that have only a single method may still be devirtualized and dispatched to. The graph is capped at
100x slowdown. The actual slowdowns range between 5.6x and 2151x. Lastly, turning off devirtual-
ization implies that no inlining will be performed and all function calls are dispatched dynamically.
The slowdowns range between 5.3x and 1905x.

Obviously, Julia was designed to be optimized with type information. These results suggest that
performance of fully dynamic code is rather bad. It is likely that if users were to write more dynamic
code, some of the techniques that have proved successful for other dynamic languages could be
ported to Julia. But clearly, the current implementation crucially relies on code being type stable
and on devirtualization and inlining. The impact of the LLVM optimizations is small in comparison.

binary_trees

fannkuch

fasta

knucleotide

mandelbrot

meteor_contest

nbody

pidigits

regex

revcomp

spectralnorm

0 25 50 75 100

Slowdown

no_devirt

no_inf

O0

Fig. 22. Optimization and performance

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

00:20 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

7 RELATEDWORK
Julia occupies an interesting position in the programming language landscape. We review some of
the related work and compare the most relevant work to Julia.

Scientific computing languages. R [R Core Team 2008] and MATLAB [MATLAB 2018] are the two
languages superficially closest to Julia. Both languages are dynamically typed, garbage collected,
vectorized and offer an integrated development environment focused on a read-eval-print loop.
However, the languages’ attitudes towards vectorization differ. In R and MATLAB, vectorized
functions are more efficient than iterative code whereas the contrary stands for Julia. In this context
we use “vectorization” to refer to code that operates on entire vectors3, so for instance in R, all
operations are implicitly vectorized. The reason vectorized operations are faster in R and MATLAB
is that the implicit loop they denote is written in a C library, while source-level loops are interpreted
and slow. In comparison, Julia can compile loops very efficiently, as long as type information is
present.

While there has been much research in compilation of R [Kalibera et al. 2014; Talbot et al. 2012;
Würthinger et al. 2013] and MATLAB [Chevalier-Boisvert et al. 2010; De Rose and Padua 1999],
both languages are far from matching the performance of Julia. The main difference, in terms of
performance, between MATLAB or R, and Julia comes from language design decisions. MATLAB
and R are more dynamic than Julia, allowing, for example, reflective operations to inspect and
modify the current scope and arbitrary redefinition of functions. Other issues include the lack of
type annotations on data declarations.

Other languages have targeted the scientific computing space, most notably IBM’s X10 [Charles
et al. 2005] and Oracle’s Fortress [Steele et al. 2011]. The two languages are both statically typed,
but differ in their details. X10 focuses on programming for multicore machines that have partitioned
global addressed spaces; its type system is designed to track the locations of values. Fortress, on
the other hand, had multiple dispatch like Julia, but never reached a stage where its performance
could be evaluated due to the complexity of its type system. In comparison, Julia’s multi-threading
is still in its infancy, and it does not have any support for partitioned address spaces.

Multiple dispatch. Multiple dispatch goes back to Bobrow et al. [1986] and is used in languages
such as CLOS [DeMichiel and Gabriel 1987], Perl [Randal et al. 2003] and R [Chambers 2014]. Lifting
explicit programmatic type tests into dispatch requires an expressive annotation sublanguage to
capture the same logic; expressiveness that has created substantial research challenges. Researchers
have struggled with how to provide expressiveness while ensuring type soundness. Languages
such as Cecil [Litvinov 1998] and Fortress [Allen et al. 2011] are notable for their rich type systems;
but, as mentioned in Guy Steele’s retrospective talk, finding an efficient, expressive and sound type
system remains an open challenge.4 The language design trade-off seems to be that programmers
want to express relations between arguments that require complex types, but when types are
rich enough, static type checking becomes difficult. The Fortress designers were not able to prove
soundness, and the project ended before they could get external validation of their design. Julia
side-steps many of the problems encountered in previous work on typed programming languages
with multiple dispatch. It makes no attempt to statically ensure invocation soundness or prevent
ambiguities, falling back to dynamic errors in these cases.

Static type inference. At heart, despite the allure of types and the optimizations they allow,
type inference for untyped programs is difficult. Flow typing tries to propagate types through
3This discussion should not be confused with hardware-level vectorization, e.g. SIMD operations, which are available to
Julia at the LLVM level.
4JuliaCon 2016, https://www.youtube.com/watch?v=EZD3Scuv02g.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

https://www.youtube.com/watch?v=EZD3Scuv02g

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Julia 00:21

the program at large, but sacrifices soundness in the process. Soft typing [Fagan 1991] applies
Hindley-Milner type inference to untyped programs, enabling optimizations. This approach has
been applied practically in Chez Scheme [Wright and Cartwright 1994]. However, Hindley-Milner
type inference is too slow to use on practically large code bases. Moreover, many language features
(such as subtyping) are incompatible with it. Constraint propagation or dataflow type inference
systems are a commonly used alternative to Hindley-Milner inference. These systems work by
propagating types in a data flow analysis [Aiken and Wimmers 1993]. No unification is needed,
and it is therefore much faster and more flexible than soft typing. Several inference systems based
on data flow have been proposed for JavaScript [Chaudhuri et al. 2017], Scheme [Shivers 1990],
and others.

Dynamic type inference for JIT optimizations. Feeding dynamic type information into a type
propagation type inference system is not a technique new to Julia. The first system to use dataflow
type inference inside a JIT compiler was RATA [Logozzo and Venter 2010]. RATA relies on abstract
interpretation of dynamically-discovered intervals, kinds, and variations to infer extremely precise
types for Javascript code; types which enable JIT optimizations. The same approach was then used
in 2012 by Hackett and Guo [2012], which used a simplified type propagation system to infer types
for more general Javascript code, providing performance improvements. In comparison to dynamic
type inference systems for Javascript, Julia’s richer type annotations and multiple dispatch allow it
to infer more precise types. Another related project is the StaDyn [Garcia et al. 2016] language.
StaDyn was designed specifically with hybrid static and dynamic type inference in mind. However,
StaDyn does not have many of Julia’s features that enable precise type inference, including typed
fields and multiple dispatch.

Dynamic language implementation. Modern dynamic language implementation techniques can
be traced back to the work of Hölzle and Ungar [1994] on the Self language, who pioneered the
ideas of run-time specialization and deoptimization. These ideas were then transferred into the Java
HotSpot compiler [Paleczny et al. 2001]; in HotSpot, static type information can be used to determine
out object layout, and deoptimization is used when inlining decisions were invalidated by newly
loaded code. Implementations of JavaScript have increased the degree of specialization, for instance
allowing unboxed primitive arrays at the more complex guards and potentially wide-ranging
deoptimization [Würthinger et al. 2013].

Other Julia papers. The Julia team’s paper [Bezanson et al. 2017] differs from the present paper
in that it is more introductory in nature, targeting the scientific community. It does not discuss the
implementation of the language, nor does it perform a corpus analysis. The performance figures
reported in the earlier work are for micro-benchmarks only.

8 CONCLUSION
This paper has argued that productivity and performance can be reconciled. Julia is a language
for scientific computing that offers many of the features of productivity languages, namely rapid
development cycles; exploratory programming without having to worry about types or memory
management; reflective and meta-programming; and language extensibility via multiple dispatch.
In spite of these features, however, a relatively simple language implementation yields speed
competitive with that of performance languages.

The language implementation is a just in time compiler which performs three main optimizations:
method specialization, method inlining and object unboxing. Code generation is delegated to the
LLVM infrastructure. The Julia implementation avoids the complex speculation and deoptimization

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

00:22 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

games played in other dynamic languages by using the concept of world age, a time stamp on
compiled code, to trigger recompilation.
The language design is tailored to these optimizations. Multiple dispatch means that any func-

tion call, by default, looks up the most applicable method given the type of the arguments; thus
any method specialization can be made immediately accessible to the entire program by simply
extending the dispatch table for the corresponding function. The ability to annotate data structure
declarations with types is helpful to the compiler as the type and the layout of fields can be speci-
fied. Combined with the restriction on subtyping concrete types—and the absence of nulls—this
facilitates unboxing. The limits on reflection allow type inference to be more precise than in similar
dynamic languages, which, in turn, makes inlining and unboxing more successful.

Finally, the programming style adopted by Julia users favors type stable functions. These functions
are easier to optimize as they are written so that every variable can be assigned a single concrete
type during method specialization. To achieve this, programmers replace branches on types by
generic calls and push all of their type testing logic into the multiple dispatch mechanism.
While our observations are encouraging, Julia is still a young language. More experience is

needed to draw definitive conclusions as most programs are small and written by domain experts.
How the approach we describe here will scale to large (multi-million lines long) programs and to
domains outside of scientific computing is a question we hope to answer in future work.

Acknowledgments. This work received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement 695412),
the NSF (award 1544542 and award 1518844) as well as ONR (award 503353).

REFERENCES
Alexander Aiken and Edward L Wimmers. 1993. Type inclusion constraints and type inference. In Proceedings of the

conference on Functional programming languages and computer architecture. ACM, 31–41.
Eric Allen, Justin Hilburn, Scott Kilpatrick, Victor Luchangco, Sukyoung Ryu, David Chase, and Guy Steele. 2011. Type

Checking Modular Multiple Dispatch with Parametric Polymorphism and Multiple Inheritance. In Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA). https://doi.org/10.1145/2048066.2048140

Todd A. Anderson, Hai Liu, Lindsey Kuper, Ehsan Totoni, Jan Vitek, and Tatiana Shpeisman. 2017. Parallelizing Julia with a
Non-Invasive DSL. In European Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.4230/LIPIcs.
ECOOP.2017.4

Ilka Antcheva, Maarten Ballintijn, Bertrand Bellenot, Marek Biskup, Rene Brun, Nenad Buncic, Philippe Canal, Diego
Casadei, Olivier Couet, Valery Fine, Leandro Franco, Gerardo Ganis, Andrei Gheata, David González Maline, Masaharu
Goto, Jan Iwaszkiewicz, Anna Kreshuk, Diego Marcos Segura, Richard Maunder, Lorenzo Moneta, Axel Naumann,
Eddy Offermann, Valeriy Onuchin, Suzanne Panacek, Fons Rademakers, Paul Russo, and Matevz Tadel. 2015. ROOT
- A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization. CoRR abs/1508.07749 (2015).
http://arxiv.org/abs/1508.07749

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia: A Fresh Approach to Numerical Computing.
SIAM Rev. 59, 1 (2017). https://doi.org/10.1137/141000671

Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok Strnisa, Jan Vitek, and Tobias Wrigstad.
2009. Thorn: Robust, Concurrent, Extensible Scripting on the JVM. In Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA). https://doi.org/10.1145/1639950.1640016

Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and Frank Zdybel. 1986. CommonLoops:
Merging Lisp and Object-oriented Programming. In Conference on Object-oriented Programming Systems, Languages and
Applications (OOPSLA). https://doi.org/10.1145/28697.28700

John Chambers. 2014. Object-Oriented Programming, Functional Programming and R. Statist. Sci. 2 (2014). Issue 29.
https://doi.org/10.1214/13-STS452

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph
von Praun, and Vivek Sarkar. 2005. X10: An Object-oriented Approach to Non-uniform Cluster Computing. (2005).
https://doi.org/10.1145/1103845.1094852

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. 2017. Fast and precise type checking
for JavaScript. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 48.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

https://doi.org/10.1145/2048066.2048140
https://doi.org/10.4230/LIPIcs.ECOOP.2017.4
https://doi.org/10.4230/LIPIcs.ECOOP.2017.4
http://arxiv.org/abs/1508.07749
https://doi.org/10.1137/141000671
https://doi.org/10.1145/1639950.1640016
https://doi.org/10.1145/28697.28700
https://doi.org/10.1214/13-STS452
https://doi.org/10.1145/1103845.1094852

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Julia 00:23

Maxime Chevalier-Boisvert, Laurie J. Hendren, and Clark Verbrugge. 2010. Optimizing Matlab through Just-In-Time
Specialization. In Conference on Compiler Construction (CC). 46–65. https://doi.org/10.1007/978-3-642-11970-5_4

Benjamin Chung and Paley Li. 2017. Towards Typing Julia. In The -2th Workshop on New Object-Oriented Languages (NOOL).
Luiz De Rose and David Padua. 1999. Techniques for the Translation of MATLAB Programs into Fortran 90. ACM Trans.

Program. Lang. Syst. 21, 2 (March 1999). https://doi.org/10.1145/316686.316693
Linda DeMichiel and Richard Gabriel. 1987. The Common Lisp Object System: An Overview. In European Conference on

Object-Oriented Programming (ECOOP). https://doi.org/10.1007/3-540-47891-4_15
Facebook. 2016. Hack. (2016). http://hacklang.org.
Mike Fagan. 1991. Soft typing: an approach to type checking for dynamically typed languages. Ph.D. Dissertation. Rice

University.
Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2002. Semantic Subtyping. In Symposium on Logic in Computer

Science (LICS). https://doi.org/10.1109/LICS.2002.1029823
Miguel Garcia, Francisco Ortin, and Jose Quiroga. 2016. Design and Implementation of an Efficient Hybrid Dynamic and

Static Typing Language. Softw. Pract. Exper. 46, 2 (Feb. 2016), 199–226. https://doi.org/10.1002/spe.2291
Isaac Gouy. 2018. The Computer Language Benchmarks Game. (2018). https://benchmarksgame-team.pages.debian.net/

benchmarksgame
Brian Hackett and Shu-yu Guo. 2012. Fast and precise hybrid type inference for JavaScript. ACM SIGPLAN Notices 47, 6

(2012), 239–250.
Urs Hölzle and David Ungar. 1994. Optimizing Dynamically-dispatched Calls with Run-time Type Feedback. In Conference

on Programming Language Design and Implementation (PLDIO). https://doi.org/10.1145/773473.178478
T. Kalibera, P. Maj, F. Morandat, and J. Vitek. 2014. A Fast Abstract Syntax Tree Interpreter for R. In Conference on Virtual

Execution Environments (VEE).
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation.

In Symposium on Code Generation and Optimization ((CGO). https://doi.org/10.1109/CGO.2004.1281665
Vassily Litvinov. 1998. Constraint-based Polymorphism in Cecil: Towards a Practical and Static Type System. In Addendum

to Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA Addendum). https:
//doi.org/10.1145/346852.346948

Francesco Logozzo and Herman Venter. 2010. RATA: rapid atomic type analysis by abstract interpretation–application to
javascript optimization. In International Conference on Compiler Construction. Springer, 66–83.

Miles Lubin and Iain Dunning. 2013. Computing in Operations Research using Julia. In INFORMS Journal on Computing.
https://doi.org/10.1287/ijoc.2014.0623

MATLAB. 2018. version 9.4. The MathWorks Inc., Natick, Massachusetts.
Microsoft. 2016. TypeScript – Language Specification. (2016).
Radu Muschevici, Alex Potanin, Ewan Tempero, and James Noble. 2008. Multiple Dispatch in Practice. In Conference on

Object-oriented Programming Systems Languages and Applications (OOPSLA). https://doi.org/10.1145/1449764.1449808
Francesco Zappa Nardelli, Artem Pelenitsyn, Julia Belyakova, Benjamin Chung, Jeff Bezanson, and Jan Vitek. 2018. Julia

Subtyping: A Rational Reconstruction. InConference on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA).

Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java HotSpot Server Compiler. In Symposium on Java Virtual
Machine Research and Technology (JVM). http://dl.acm.org/citation.cfm?id=1267847.1267848

R Core Team. 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
http://www.R-project.org

Allison Randal, Dan Sugalski, and Leopold Toetsch. 2003. Perl 6 and Parrot Essentials. O’Reilly.
Olin Shivers. 1990. Data-flow Analysis and Type Recovery in Scheme. In Topics in Advanced Language Implementation. MIT

Press, 47–88.
Jeremy Siek. 2006. Gradual Typing for Functional Languages. In Scheme and Functional Programming Workshop. http:

//ecee.colorado.edu/~siek/pubs/pubs/2006/siek06_gradual.pdf.
Guy Steele, Eric Allen, David Chase, Christine Flood, Victor Luchangco, Jan-Willem Maessen, and Sukyoung Ryu.

2011. Fortress (Sun HPCS Language). In Encyclopedia of Parallel Computing. 718–735. https://doi.org/10.1007/
978-0-387-09766-4_190

Justin Talbot, Zachary DeVito, and Pat Hanrahan. 2012. Riposte: a trace-driven compiler and parallel VM for vector code in
R. In Proceedings of Parallel Architectures and Compilation Techniques (PACT).

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage migration: from scripts to programs. In Symposium on
Dynamic languages (DLS). https://doi.org/10.1145/1176617.1176755

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and implementation of typed Scheme. In Symposium on
Principles of Programming Languages (POPL). https://doi.org/10.1145/1328438.1328486

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

https://doi.org/10.1007/978-3-642-11970-5_4
https://doi.org/10.1145/316686.316693
https://doi.org/10.1007/3-540-47891-4_15
http://hacklang.org
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1002/spe.2291
https://benchmarksgame-team.pages.debian.net/benchmarksgame
https://benchmarksgame-team.pages.debian.net/benchmarksgame
https://doi.org/10.1145/773473.178478
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/346852.346948
https://doi.org/10.1145/346852.346948
https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.1145/1449764.1449808
http://dl.acm.org/citation.cfm?id=1267847.1267848
http://www.R-project.org
http://ecee.colorado.edu/~siek/pubs/pubs/2006/siek06_gradual.pdf
http://ecee.colorado.edu/~siek/pubs/pubs/2006/siek06_gradual.pdf
https://doi.org/10.1007/978-0-387-09766-4_190
https://doi.org/10.1007/978-0-387-09766-4_190
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1328438.1328486

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

00:24 Bezanson, Chen, Chung, Karpinski, Shah, Zoubritzky, Vitek

Andrew K Wright and Robert Cartwright. 1994. A practical soft type system for Scheme. In ACM SIGPLAN Lisp Pointers,
Vol. 7. ACM, 250–262.

Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor Richards,
Doug Simon, and Mario Wolczko. 2013. One VM to Rule Them All. In Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward!). https://doi.org/10.1145/2509578.2509581

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 00. Publication date: 2018.

https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Julia in action
	3 Evaluating relative performance
	4 The Julia programming language
	4.1 Values, types, and annotations
	4.2 Multiple dispatch
	4.3 Metaprogramming
	4.4 Discussion

	5 Implementing Julia
	5.1 Method specialization
	5.2 Type inference
	5.3 Method inlining
	5.4 Object unboxing

	6 Julia in Practice
	6.1 Typeful programming
	6.2 Multiple dispatch
	6.3 Specializations
	6.4 Impact on performance

	7 Related work
	8 Conclusion
	References

