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Abstract. Pattern matching is a programming language feature for selecting a
handler based on the structure of data while binding names to sub-structures.
By combining selection and binding, pattern matching facilitates many common
tasks such as date normalization, red-black tree manipulation, conversion of XML
documents, or decoding TCP/IP packets. Matchete is a language extension to
Java that unifies different approaches to pattern matching: regular expressions,
structured term patterns, XPath, and bit-level patterns. Matchete naturally allows
nesting of these different patterns to form composite patterns. We present the
Matchete syntax and describe a prototype implementation.
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1 Introduction

Recognizing patterns in data is a recurrent problem in computer science. Many pro-
gramming languages and systems provide syntax for pattern matching. Functional
programming languages emphasize matching over data types, and support defining
functions as sequences of cases over the structure of their parameters. String-oriented
languages such as AWK or Perl come with builtin support for pattern matching with a
powerful regular expression language. XML processing systems often support extract-
ing sub-structures from a document. Finally, some languages support matching of bit-
level data to extract patterns in network packets or binary data streams. While pattern
matching constructs differ in terms of syntax, data types, type safety, and expressive
power, they share the common characteristic of being able to conditionally deconstruct
input data and bind variables to portions of their input. This paper is a step towards
a unified pattern matching construct for the Java programming language. Our exper-
imental compiler, called Matchete, supports the different flavors of pattern matching
mentioned above as well as user-defined patterns.

Below is a simple example that illustrates the expressive power of Matchete. The
method expects a list of strings containing a name and an age, encoded as
a sequence of letters followed by a seqence of digits. It traverses the list until it finds a
value matching its argument. If found, it converts the associated age to an integer
and returns it. This function showcases a number of features of Matchete. The
statement extracts the value from a object. A nested pattern specifies a regular
expression and at the same time performs string comparison against the value of .
Its field is implicitly converted from a to a primitive .
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int findAge(String name, List l) {
match(l) {
cons˜(/([a-zA-Z]+) ([0-9]+)/(name, int age), _): return age;
cons˜(_, List tail): return findAge(name, tail);
}
return -1;
}

Matchete’s contribution is a seamless and expressive integration of the major flavors
of pattern matching with a straightforward syntax and semantics. This should be con-
trasted with many recent efforts that focus on a particular pattern matching style, for
example, functional-style patterns in an object-oriented language [5,19,20]. In Match-
ete, functional-style term patterns, Perl-style regular expressions, XPath expressions,
and Erlang-style bit-level patterns can contain one another, and use the same small set
of primitive patterns at the leaves. Matchete is a minimal extension to Java, adding only
one new statement, one new declaration, and one new kind of expression to the base
language. We have implemented a fully functional prototype and have validated the
applicability of Matchete by a number of small case studies. The Matchete prototype
compiler performs no optimizations, we leave this to future work.

2 Related Work

Structured term pattern matching is a central feature of functional programming lan-
guages. In languages such as ML [22] or Haskell [17], instances of algebraic data types
can be constructed and deconstructed using the same constructors. The simplicity and
elegance of the approach is tied to having a relatively simple data model in which the
definition of a data type suffices to automatically define constructors that can be in-
verted to deconstructors. Object oriented languages introduce abstract data types, and
even where constructors could be automatically inverted, this would violate encapsula-
tion and interact poorly with inheritance. A number of recent works have investigated
extensions to object-oriented languages that allow pattern matching over abstract data
types. Views are implicit coercions between data types that are applied during pattern
matching [27]. Active patterns [26] for F# generalize views to functions that decon-
struct values into an option type—either values if the input value can be decon-
structed or . Active patterns can be used just like regular structural pattern match-
ing on data types. Scala’s extractors [5] are a form of active patterns for objects. PLT
Scheme’s match form allows adding new pattern matching macros, which can be used
to support other kinds of pattern matching by supplying an expansion to the primitive
matching forms [29]. Tom is a preprocessor that adds structured term pattern match-
ing to Java, C, and Eiffel [23]. OOMatch [25] and JMatch [20] are Java extensions.
OOMatch allows pattern declaration in method parameters and resembles Matchete in
its treatment of extractors. JMatch provides invertible methods and constructors, which
serve to deconstruct values during pattern matching, and also support iteration and logic
programming.

String pattern matching is a central feature of text-processing languages such as
SNOBOL [12] and Perl [28]. While the Java standard library provides an API for Perl-
style regular expressions, which are familiar to many programmers, this API can be
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awkward to use and leads to code that is considerably more verbose than an equivalent
Perl program. Matchete addresses this shortcoming by integrating Perl regular expres-
sions directly in the language.

Bit-level data manipulation has traditionally been the domain of low-level languages
such as C. Some recent work takes a type-based approach for parsing bit-level data
[1,4,7]. The Erlang programming language, on the other hand, allows specifying bit-
level patterns directly. Erlang’s patterns are widely used for network protocols, and are
optimized [14]. Matchete follows the Erlang approach.

XML pattern matching comes in two flavors: XPath expressions and semi-structured
terms. XPath expressions are paths through the tree representation of an XML doc-
ument that specify sets of nodes [3]. XPath is the primary matching mechanism of
XSLT, and Matchete supports XPath directly. Several recent languages treat XML as
semi-structured terms [2,8,15,16,18,19,21]. These languages support patterns similar to
structured term patterns in functional languages, in some cases augmented by Kleene
closure over sibling tree nodes. Matchete also supports structured term patterns.

What sets Matchete apart from this previous work is that it integrates XPath and
structured term matching with each other and with Perl-style regular expressions and
bit-level patterns.

3 The Matchete Language

Matchete extends Java with a statement with the following syntax:

MatchStatement ::= Expression { MatchClause* }
MatchClause ::= MatchPattern Statement

A requires an Expression (the subject of the match) and zero or more Match-
Clauses. Each MatchClause has the form MatchPattern Statement, where the
MatchPattern guards the execution of the Statement (or handler), and may make some
bindings available for the handler. The syntax deliberately resembles that of the Java

statement, with three important differences: there is no need to write be-
fore each clause, each handler consists of a single statement (which may be a block),
and the keyword is not used to prevent fall-through. This last difference is moti-
vated by software engineering concerns (it is a common mistake to forget a ), and
by the need to provide a well-defined scope for variables bound by patterns.

A common beginner’s exercise in functional languages is to write a recursive func-
tion that multiplies the elements of a list. List multiplication has a simple re-
cursive definition: multiply the first element with the result of multiplying the rest of
the list. For example, . The last factor,

, requires a base case: for an empty list the function returns 1, the multiplica-
tive identity. Of course, if any number in the list is zero, the entire product will be zero
and the rest of the list need not be evaluated.

Fig. 1 shows the Matchete definition of . The match statement matches the pa-
rameter against two clauses. The first clause handles the case when the value at the
head of the list is zero. The second clause extracts the head of the list, , and the tail
of the list, , and multiplies by the result of recursively calling on . If the list
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1 int mult(IntList ls) {
2 match (ls) {
3 cons˜(0, _): return 0;
4 cons˜(int h, IntList t): return h * mult(t);
5 }
6 return 1;
7 }

Fig. 1. List multiply in Matchete

is empty, neither clause matches, and returns 1. The method is a user-
defined deconstructor of the class that extracts the head and the tail of a list.

This example illustrates four kinds of patterns: wildcard ( matches anything), values
(0 matches the integer zero), binders ( matches any integer and binds it to ), and
deconstructor patterns ( matches composite data, extracts its parts, and dele-
gates said parts to nested patterns).

3.1 Evaluation Order

Matchete defines a deterministic order of evaluation for patterns. A match statement
evaluates match clauses sequentially in textual order until a clause succeeds. Each
clause evaluates patterns sequentially in textual order until either a pattern fails, or con-
trol reaches the handler statement.

Each pattern, whether simple or composite, operates on a subject. The expression
on which the match statement operates becomes the subject for the outermost pattern
of each match clause. Composite patterns provide subjects for their children (nested
patterns) to match on. Consider the following clause where the outer supplies its
two nested patterns with subjects:

cons˜(1, cons˜(int x, IntList y)): print("1::"+x+"::"+y);

Each pattern also has a unique successor. The succes-

cons~

cons~1

int x IntList y

print("1::" + x + "::" + y);

1 5 3 2

5 3 2

3 2

1

5

Fig. 2. Evaluation order

sor of a pattern is the next pattern to run if the match
has been successful through the given pattern. In other
words, each pattern determines whether its successor
runs, or whether to branch to the next clause, if any.
The successor of the last pattern in a match clause is
the handler.

Fig. 2 illustrates match statement evaluation order:
composite patterns have solid edges to child patterns
(nesting edges), and each pattern has a dotted edge to
its successor (branching edges). Subjects flow along

nesting edges, bindings flow along successor edges. Nesting edges are labeled with
subjects flowing from parent to child patterns. For example, if the match statement op-
erates on the list , that list becomes the subject of the outermost pattern. Each
parent pattern extracts subjects for its children to match on. In this case, the number
flows to the left child, and the sublist flows to the right child. Successor edges
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chain all patterns in the nesting tree in a preorder depth-first traversal. This means that
pattern matches are attempted in textual order, left-to-right. If a pattern succeeds, it
branches to its successor, otherwise, it branches out of the current match clause. The
successor of the last pattern is the handler, in this case, the statement.

3.2 Type Conversions

Because there can be a mismatch between the type of the data under consideration and
the most convenient type for manipulating that data in the handler, Matchete provides
support for automatic type conversions. For example, Java programs may store boxed

values, yet in order to perform arithmetic, these must be unboxed. Matchete
will do the unboxing for the programmer as part of pattern matching. Likewise, XML
DOM trees contain text nodes, which the handler may want to manipulate as strings.
Pattern matching also makes a branching decision, and it is often convenient to consider
the type in that decision. For example, catch clauses in Java try/catch statements per-
form a limited form of pattern matching, converting the subject (an exception object)
to the type of the catch clause (a subclass of ) if the appropriate subclass
relationship holds.

Table 1. Type conversions during pattern matching. , , and are defined
in package , while and are defined in package .

Subject Target type Constraints
→
→ and
→ and
→ is a boxed object assignment convertible to PrimitiveType
→ and T T succeeds
→ (always succeeds, using the method of the box type)
→ assignment convertible to

Matchete augments Java’s type conversions and promotions [9, Chapter 5] with so-
called matching conversions, defined as a relation between values and types. Table 1
gives these conversion rules. For example, if the subject of a match is a reference with
static type , say the string literal , it can be converted to a reference target
of type provided that the dynamic check succeeds. In some cases,
the conversion may involve multiple steps to get from the subject to the target. For ex-
ample, → → → starts from the result of an XPath query,
and converts it to an if all the constraints along the way are satisfied. In general,
Matchete attempts conversions in the order in which Table 1 enumerates them, and the
conversion succeeds if it reaches the target type.

3.3 Primitive Patterns

Matchete has three kinds of primitive patterns which can be used at the leaves of a
match clause.
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Wildcard Patterns ::=
The wildcard pattern, written , is a catch-all that always matches. Formally, every
occurence of the wildcard pattern is distinct and can match against any Java value.

Value Patterns ::= Expression
It is often convenient to check whether a subject has a particular value. In general, value
patterns match against arbitrary Java expressions. A value pattern match first checks
whether the type of the subject can be converted to the type of the expression. If so,
it checks for equality using (for primitive types or null) or (for reference
types). If both the conversion and the comparison succeed, the value pattern branches
to its successor, otherwise it fails.

Binder Patterns ::= Modifiers Type Identifier Dimensions?

Composite patterns extract parts of the subject and bind them to names, so that the hand-
ler statement can refer to them directly. This binding is performed by binder patterns.
For example, the function uses the binder pattern to bind the head of the list
to a new local variable for the handler. In general, a binder pattern match succeeds if
the type of the subject can be converted to the type of the expression. Binder patterns
look like variable declarations, with modifiers (e.g., ), a type, an identifier, and an
optional dimensions for array types. The binding is visible in all successors in the same
match clause.

3.4 Composite Patterns

A composite pattern is one that has nested sub-patterns, which may themselves be com-
posite or primitive. Each composite pattern, regardless of kind, first decides whether or
not to invoke the nested patterns, and if yes, supplies them with subjects. If the com-
posite pattern and everything nested inside of it succeed, it invokes its successor. For
example, the root node of Fig. 2 is a composite pattern. It first checks that its subject is
a non-empty list. If so, it extracts parts of the list, and supplies them as subjects to its
children. If all succeed, the handler runs.

Deconstructor Patterns ::= Identifier PatternList
Deconstructor patterns allow Matchete to match structured terms of user-defined data
types and thus program in a style reminiscent of functional programming. One notable
difference is that deconstructor patterns invoke user-defined methods that decouple data
extraction from the implementation of the data type, preserving encapsulation. A pattern
list is simply a comma-separated list of match patterns:

PatternList ::= MatchPattern
(

MatchPattern
)∗ | Empty

Semantically, the deconstructor pattern first checks whether the subject has a decon-
structor method with the given identifier, for example, in Fig. 1. If yes, it calls

(). The method either returns the subjects for nested patterns, or re-
ports a failure. If there was no failure and the number of subjects matches the length of
the PatternList, the deconstructor pattern branches to the first nested pattern. Matching
proceeds as usual following the rules from Section 3.1.
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1 class IntList {
2 private int head; private InList tail;
3 public IntList(int h, IntList t){ head = h; tail = t; }
4 public cons˜(int h, IntList t){ h = head; t = tail; }
5 }

Fig. 3. List declaration with deconstructor

Deconstructor methods have syntax and semantics that differ from normal Java meth-
ods. Syntactically, deconstructors are denoted by the presence of a tilde between their
name and their argument list. They have no declared return type.

Declaration ::+= ... | Deconstructor
Deconstructor ::= Modifiers Identifier ParameterList ThrowsClause? Block

Semantically, the arguments of a deconstructor are out parameters which must be
assigned to in the body. The deconstructor can use a statement to exit early and
report failure. Fig. 3 is an example where class has two private fields, a con-
structor, and a deconstructor (Line 4). In this case, the deconstructor is the inverse of
the constructor, it assigns the fields into output parameters for use as subjects in nested
matches. The current version of Matchete has no notion of exhaustive matches or un-
reachable clauses. Considering that deconstructors are user-defined this seems difficult.

Array Patterns ::= ArrayType PatternList
Array patterns are a special case of deconstructor patterns for Java arrays. For example,
the pattern { } matches an array of three elements if the first element
is 1 and the second element has the same value as variable , and binds the third element
to a fresh variable . The syntax of array patterns resembles that of array constructors.
In general, an array pattern first checks whether the subject is an array of the appropriate
length, then invokes nested patterns on extracted elements. Matching proceeds as usual
following the rules from Section 3.1.

Regular Expression Patterns ::= RegExpLiteral PatternList
Perl excels at extracting data from plain text. This can be attributed to the tight integra-
tion of regular expression pattern matching in the syntax. Regular expressions are a fun-
damental concept from language theory that has phenomenal practical success, because
they concisely describe string matches that can be implemented efficiently. For instance,
consider the regular expression pattern .
The slashes delimit a regular expression that matches a sequence of digits followed
by a decimal point followed by more digits. Parentheses, . . . , inside the regular ex-
pression capture groups of characters to extract. The parentheses on the right contain a
list of nested patterns, which operate on the groups captured by the regular expression
on the left. On success, this pattern binds to the digits after the decimal1 point.

Regular expression patterns first convert the subject to a string, then match it as spec-
ified by the package. If this succeeds and produces the correct num-
ber of results, the pattern invokes its nested patterns, providing the results as subjects.
Matching proceeds as usual following the rules from Section 3.1.
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XPath Patterns ::= XPathLiteral PatternList
XML is a widely-used data interchange format, and XPath is a pattern matching mech-
anism on the tree representation of an XML document. XPath is widely used because
it facilitates common data manipulation tasks through a simple tree query language.
An XPath query specifies a path in the tree of XML nodes in a fashion similar to how
file name paths in most operating systems specify paths in the tree of directories. The
subject of the match is a node, and the result is a set of nodes. Matchete supports XPath
patterns. For example, extracts the set of
all grandchildren that are children of children of the subject.

A Matchete XPath pattern converts the subject to a or , then queries
it as specified by the package. If this throws any exception, it
catches that exception and the match fails, otherwise, it supplies the resulting
as the subject to nested patterns. Matching proceeds as usual following the rules from
Section 3.1.

Bit-Level Patterns ::=
(

| | MatchPattern Expression
)∗

When communicating with low-level network and hardware interfaces, programs need
to manipulate data at the level of raw bits. Writing code that does that by hand with
shifts and masks is time-consuming and error-prone. However, this problem resembles
other typical pattern tasks, in that it requires branching (depending on tag bits) and
binding (extracting sequences of payload bits and storing them in variables). Matchete
supports matching at the bit-level using patterns such as
[[ (0xdeadbeef : 32) 10 (byte x: 6) (int y: x) (int z: 24 - x) ]]

This example extracts the first 32 bits, converts them to an integer, and matches them
against the the nested integer value pattern . On success, it matches literal
bits and , then a group of 6 bits, which it binds using the nested binder pattern

. Next, it extracts a group of bits into , and a group of 24 − bits into .
Bit-level patterns consist of two kinds of sub-patterns: literal or for matching

individual bits, and groups in parentheses for matching subsequences of bits. Each
group has the syntax MatchPattern Expression , where the expression specifies a
bit width, the number of bits to use as the subject of the nested pattern. The width ex-
pression can be any Java expression producing an , including literals, variables, or
arithmetic expressions. The subject for the nested pattern is the group of bits converted
to the smallest primitive type that will hold it.

Besides patterns for bit-level deconstruction, Matchete also has expressions for bit-
level construction, whose syntax is similar:

PrimaryExpression ::+= ... | BitLevelExpression
BitLevelExpression ::=

(
| | Expression Expression

)∗

Parameterized Patterns ::= Identifier Expression PatternList
Parameterized patterns are Matchete’s extension mechanism: they allow users to im-
plement new kinds of patterns for use in match statements. For example, the following
code uses a parameterized pattern where the parameter is a regular expression string,
instead of using the built-in RegExp syntax:
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1 matchete.Extractor re = myLibrary.RegExp();
2 match(subject) {
3 re("([a-zA-Z]+)!([0-9]+)")˜(name, int age): handler(age);
4 }

Line 1 creates an extractor and stores it in variable . Matchete implements Line 3 by
first making the call

That call returns an extraction (a tuple of subjects), and Matchete matches the extraction
against the nested patterns (in this case, the value pattern and the binder pattern

). If all succeeds, Matchete executes the handler.
To support an additional pattern matching mechanism in Matchete, the user needs to

implement two matchete library interfaces:

interface Extractor{ Extraction extract(Object subject, Object pattern); }
interface Extraction{ int size(); Object get(int i); }

In the earlier example, was a class that implements the Extractor in-
terface, and was passed in as the parameter. In gen-
eral, the pattern parameter can be anything, such as an SQL query, a fileglob, a boolean
predicate, or a scanf format. A parameterized pattern in a match statement leads to an
extractor call, which returns an extraction, and Matchete matches the extraction against
nested patterns. Matching proceeds as usual following the rules from Section 3.1.

3.5 Deconstructors, Extractors, and Parameterized Patterns

Matchete’s deconstructor patterns and parameterized patterns are similar in that both
invoke a user-defined pattern matching method. For deconstructors, that method is an
instance method of the subject. For parameterized patterns, that method is a method of
a separate extractor object. Deconstructors are part of the design of a data type, whereas
parameterized patterns serve to wrap a pattern matching library that operates on existing
types such as strings.

Other languages supported user-defined pattern matching methods before Matchete.
The Scala language supports extractors, which are objects with a user-defined
method [5]. For example, if the name refers to an extractor object, then the pattern

calls and uses the return values in nested patterns.
The F# language supports active patterns, which are first-class functions [26]. They
work similarly to Scala extractors, but furthermore, can take additional input parame-
ters, similar to parameterized patterns in Matchete.

Matchete gives a slightly different design point than Scala and F#. It relies less on
functional language features, and integrates with more other flavors of pattern matching.

3.6 Summary

Table 2 summarizes Matchete’s syntax. The additions are limited to a new kind of state-
ment (MatchStatement), one new kind of declaration (Deconstructor), and one new kind
of expression (BitLevelExpression). The syntax and semantics of these are described
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Table 2. Matchete syntax. Literals are set in monospace fonts, non-terminals in italics. The syntax
for RegExpLiteral and XPathLiteral is checked by and .

Nonterminal Parsing Expression
Statement ::+= ... | MatchStatement
Declaration ::+= ... | Deconstructor
PrimaryExpression ::+= ... | BitLevelExpression
MatchStatement ::= Expression MatchClause*
MatchClause ::= MatchPattern Statement
MatchPattern ::= WildcardPattern | BitLevelPattern | ArrayPattern

| BinderPattern | DeconstructorPattern | ParameterizedPattern
| RegExpPattern | XPathPattern | ValuePattern

ArrayPattern ::= ArrayType PatternList
BinderPattern ::= Modifiers Type Identifier Dimensions?

BitLevelExpression ::=
(

| | Expression Expression
)∗

BitLevelPattern ::=
(

| | MatchPattern Expression
)∗

DeconstructorPattern ::= Identifier PatternList
Deconstructor ::= Modifiers Identifier ParameterList ThrowsClause? Block
ParameterizedPattern ::= Identifier Expression PatternList
PatternList ::= MatchPattern

(
MatchPattern

)∗ | Empty
RegExpPattern ::= RegExpLiteral PatternList
ValuePattern ::= Expression
WildcardPattern ::=
XPathPattern ::= XPathLiteral PatternList

earlier in this section. Composite patterns are those where MatchPattern occurs in the
right hand side of the grammar rule. By using the general MatchPattern non-terminal
instead of any specific kind of pattern, all formalisms are pluggable into each other at
the syntactic level. Pluggability at the semantic level is accomplished by the evaluation
order rules from Section 3.1 and the type conversion rules from Section 3.2.

4 Examples

Red–black trees. Fig. 4 shows part of a Matchete implementation of red–black trees
[13,24]. The method uses the deconstructor to disassemble a node into
its components, and then reassembles black interior nodes so that the data structure
invariant is maintained: each red node must have two black children.

TCP/IP packet headers. Fig. 5 shows bit-level patterns used to recognize TCP/IP
packets. The packet header contains the length of the header itself in 32-bit words
(Line 5), and the length of the entire packet in bytes (Line 7). The header consists of a
fixed 5-word (20-byte) section and an optional variable-length field (Line 18).
The length is computed by subtracting the fixed 5-word length from the header
length field. If the header length is less than 5 words, the packet is malformed and the
pattern match will fail. Similarly, the length of the packet payload (Line 19) is a func-
tion of the extracted length and header length.



160 M. Hirzel et al.

1 class Node {
2 static final int R = 0, B = 1;
3
4 int color;
5 Node left, right;
6 int value;
7
8 Node(int c, Node l, int v, Node r) {
9 color = c; left = l; value = v; right = r;

10 }
11
12 T˜(int c, Node l, int v, Node r) {
13 c = color; l = left; v = value; r = right;
14 }
15
16 Node balance() {
17 match (this) {
18 T˜(B,T˜(R,T˜(R,Node a,int x,Node b),int y,Node c),int z,Node d):
19 return new Node(R, new Node(B,a,x,b), y, new Node(B,c,z,d));
20 T˜(B,T˜(R,Node a,int x,T˜(R,Node b,int y,Node c)),int z,Node d):
21 return new Node(R, new Node(B,a,x,b), y, new Node(B,c,z,d));
22 T˜(B,Node a,int x,T˜(R,T˜(R,Node b,int y,Node c)),int z,Node d):
23 return new Node(R, new Node(B,a,x,b), y, new Node(B,c,z,d));
24 T˜(B,Node a,int x,T˜(R,Node b,int y,T˜(R,Node c,int z,Node d))):
25 return new Node(R, new Node(B,a,x,b), y, new Node(B,c,z,d));
26 }
27 return this;
28 }
29 }

Fig. 4. Red–black tree balancing

5 The Matchete Compiler

We implemented a compiler that translates Matchete source code into Java source code.
The result can then be compiled with a regular Java compiler to Java bytecode, and
executed on a Java virtual machine together with the Matchete runtime library.

5.1 Background: Rats! and xtc

The Matchete parser is generated by Rats!, a packrat parser generator [11]. Rats! has
a module system for grammars, which permits Matchete to reuse and extend the Java
grammar without copy-and-paste. Instead, the Matchete grammar simply includes the
Java grammar as a module, changes it with rule modifications, and adds new rules
only for new language features. As Rats! is scannerless (i.e., it does not separate lexing
from parsing), Matchete needs to recognize new tokens only in match clauses without
perturbing the Java syntax.
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1 class IPDumper {
2 void dumpPacket(byte[] b) {
3 match (b) {
4 [[ (4: 4) /* version 4 */
5 (byte headerLength: 4)
6 (int TOS: 8)
7 (int length: 16)
8 (int identification: 16)
9 (byte evil: 1)

10 (byte doNotFragment: 1)
11 (byte moreFragmentsFollow: 1)
12 (int fragmentOffset: 13)
13 (int ttl: 8)
14 (int protocol: 8)
15 (int headerChecksum: 16)
16 (byte[] srcAddr: 32)
17 (byte[] dstAddr: 32)
18 (byte[] options: ((headerLength-5)*32))
19 (byte[] payload: (length-headerLength*4)*8) ]]: {
20 System.out.println("Source!address:!" + dotted(srcAddr));
21 System.out.println("Destination!address:!" + dotted(dstAddr));
22 }
23 _: System.out.println("bad!header");
24 }
25 }
26 String dotted(byte[] a) {
27 return a[0] + "." + a[1] + "." + a[2] + "." + a[3];
28 }
29 }

Fig. 5. TCP/IP packet header parsing

Matchete uses libraries from the xtc eXTensible C toolkit [10], which includes se-
mantic analyzers for Java and C. Analyzers are visitors that traverse abstract syntax
trees with dynamic dispatch, which permits the Matchete compiler to reuse and ex-
tend the Java analyzer without copy-and-paste. Instead, the Matchete semantic analyzer
is simply a subclass of the Java analyzer, and defines additional methods for
the new grammar productions. xtc also includes support for synchronized traversal of
symbol tables. This permits Matchete to populate the symbol table during semantic
analysis, then automatically push and pop the same scopes for the same nodes dur-
ing code generation. One feature of xtc that was particularly helpful in writing the
Matchete compiler is the support for concrete syntax, which generates abstract syn-
tax tree snippets from parameterized stencils. This facilitated generation of the boiler-
plate code required to use, for example, the and
APIs.
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5.2 Type Checking

The Matchete compiler statically checks the semantic rules of Java as specified in the
Java Language Specification [9]. This includes checking Java code nested inside of new
Matchete constructs, such as value patterns, handler statements, deconstructor bodies,
and width expressions of bit-level patterns. Type checking of regular Java code is facil-
itated by Matchete’s language design. For example, binder patterns declare the type of
the bound variable, which gets used for type-checking the handler statement.

5.3 Translation

The Matchete compiler is a prototype that demonstrates the existence of a straightfor-
ward translation from Matchete to Java. It performs no optimizations, we leave that to
future work.

1 static int mult(IntList ls) {
2 boolean matchIsDone=false;
3 if (matchete.Runtime.hasDeconstructor(ls , "cons")) {
4 final Object[] subject1= matchete.Runtime.deconstruct(ls, "cons");
5 if (null!=subject1 && 2==subject1.length) {
6 final Object subject2=subject1[0];
7 if (matchete.Runtime.convertible(subject2, Integer.TYPE)
8 && 0==matchete.Runtime.toInt(subject2)) {
9 matchIsDone=true;

10 return 0;
11 }
12 }
13 }
14 if (!matchIsDone && matchete.Runtime.hasDeconstructor(ls, "cons")) {
15 final Object[] subject3=matchete.Runtime.deconstruct(ls, "cons");
16 if (null!=subject3 && 2==subject3.length) {
17 final Object subject4=subject3[0];
18 if (matchete.Runtime.convertible(subject4, Integer.TYPE )) {
19 int h=matchete.Runtime.toInt(subject4);
20 final Object subject5=subject3[1];
21 if (null==subject5 || subject5 instanceof IntList) {
22 IntList t=(IntList) subject5;
23 matchIsDone=true;
24 return h * mult(t);
25 }
26 }
27 }
28 }
29 return 1;
30 }

Fig. 6. Code generated for example from Fig. 1
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After parsing and type checking, the Matchete compiler has a Matchete abstract
syntax tree (AST) with type annotations and a symbol table. Next, it transforms this
AST into a Java AST. Finally, it turns the Java AST into Java source code. The resulting
Java code calls the library for services implementing common tasks,
in particular, dynamic type conversions. As illustrated in Fig. 2, a match consists of a
sequence of patterns, each one determining whether its successor runs. The successor
order follows a preorder depth-first traversal of the AST. During code generation, each
pattern AST node turns into an if-statement around the code generated for its successor.
To generate this structure, the code generator simply traverses patterns in reverse order,
plugging each pattern into its predecessor as it creates them.

Fig. 6 shows the code generated for the Matchete code in Fig. 1. The outermost if-
statements (Lines 3–13 and 14–28) correspond to the match clauses in Lines 3 and
4 of Fig. 1. They communicate with each other using a synthesized boolean variable

. This code illustrates the translation of deconstructor patterns (Lines 3–
5 and 15–17), value patterns (Lines 7–8), the wildcard pattern (no clause required,
cf. Fig. 1), and binder patterns (Lines 18–19 and 21–22). The result of deconstructor pat-
terns get used by multiple children, not just the immediate successor (Lines 17 and 20).
Deconstructor patterns are currently implemented with reflection, but we intend to use
static types to invoke deconstructors directly. The scope of bindings from binder pat-
terns extends over all their successors. For example, variable declared on Line 19 is
in scope for the handler in Line 24. Note that code generation for value and binder pat-
terns requires type analysis: for example, Line 7 checks whether subject2 is convertible
to the type of a value expression. In this case, the value is 0, so the type is obviously .
But in general, value patterns can contain arbitrary Java expressions, including calls and
arithmetic, so finding their type requires a type checking phase in the compiler.

A deconstructor 1 1, . . . , n n translates to a method with no formal pa-
rameters. The deconstructor parameters are translated to local variables of the generated
method, and the bindings in the deconstructor body are translated to assignments to
these variables. The method returns an array initialized with the deconstructor
parameters. A statement compiles to .

As another example of how the compiler translates composite patterns, consider this
XPath pattern for bibliography data: .
Fig. 7 shows the Java code that the Matchete compiler generates for this pattern. It

1 XPath evaluator = XPathFactory.newInstance().newXPath();
2 try {
3 final Object nodeList = (NodeList) evaluator.evaluate(
4 ".//author/text()",(Node)subject, XPathConstants.NODESET);
5 if (null == nodeList || nodeList instanceof NodeList) {
6 NodeList authors = (NodeList) nodeList;
7 /* successor code */
8 }
9 } catch (XPathExpressionException e) { /* do nothing */ }

Fig. 7. Code generated for an XML query
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delegates the actual evaluation of the XPath expression to standard Java libraries. Un-
like other pattern types, XPath patterns detect match failure by catching an exception.
The exception prevents successor patterns from executing, and the empty block
allows control to reach the next match clause, or the end of the match statement if this
pattern was in the last match clause.

6 Discussion

One tradeoff we faced when we designed Matchete was how tightly to integrate each
kind of pattern matching mechanism. Both regular expressions and XPaths are exam-
ples of loosely integrated pattern matching mechanisms. They are integrated, since they
can nest and be nested in patterns of other kinds. But they could be more tightly inte-
grated. For example, the regular expression
specifies groups twice: once in the regular expression on the left, and then again in the
nested binder patterns on the right. A tight integration would combine the two, so that
programmers do not have to rely on counting and ordering to correlate them. The ad-
vantage of loose integration is that it does not alter the familiar syntax of the existing
matching mechanism, and it allows the implementation to reuse feature-rich optimized
libraries.

An example of tight integration is bit-level patterns in Matchete. A syntactic argu-
ment for tight integration is that when the different matching mechanisms resemble
each other, programmers can amortize their learning curve. On the other hand, tight
integration puts the full burden of the implementation on the host language vendor.

At the other end of the spectrum is no integration. For example, Matchete does not
directly support file name patterns as used in shells or makefiles. Matchete focuses on
covering the most important kinds of matches: on typed structured data (deconstructor),
on bit data (bit-level), on semistructured data (XPath), and on text (RegExp). But it
leaves out variations of these kind of matches, such as file name patterns. Instead, it
provides an extension mechanism (parameterized patterns).

Matchete has to strike a balance between static and dynamic typing. The arguments
for and against either are a subject of hot debate and beyond the scope of this paper.
But no language design can avoid decisions on this. Matchete’s decisions are summa-
rized in Section 3.2 and Table 1. Pattern matching in Matchete is mostly dynamically
typed. This felt natural, since patterns are often used to overcome a data representa-
tion mismatch. However, it reduces optimization opportunities, which is why Matchete
adds hints that can allow compilers to determine types statically in many cases. One
advantage of demonstrating pattern matching with little reliance on types is that it is
more applicable to dynamically typed host languages—Matchete features could easily
be transferred from Java to a scripting language. Note that Matchete pattern matches
are strongly typed: when they would violate types, patterns quietly fail instead.

The combination of dynamic typing and source-to-source translation raises concerns
about ease of debugging Matchete code. When a match statement does not work as
the programmer expected, they need to pinpoint the defect. Matchete uses functionality
provided with xtc to inject SMAPs [6] into class files, which allow Java debuggers such
as Eclipse or Jdb to work at the level of the original Matchete source code.
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7 Conclusions

This paper has introduced Matchete, an extension to the Java programming language
with a pattern matching construct that integrates data structure deconstruction, string
and bit-level manipulation, and XML queries. Our experience with Matchete suggests
that the ability to mix and match different kinds of pattern expressions is powerful and
leads to compact and elegant code. The prototype compiler is adequate as a proof of
concept, but we are actively working on optimizing the generated code.
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