
An Analysis of the Dynamic Behavior of JavaScript Programs

Gregor Richards Sylvain Lebresne Brian Burg Jan Vitek
S3 Lab, Department of Computer Science, Purdue University, West Lafayette, IN

{gkrichar,slebresn,bburg,jv}@cs.purdue.edu

Abstract
The JavaScript programming language is widely used for web
programming and, increasingly, for general purpose computing.
As such, improving the correctness, security and performance of
JavaScript applications has been the driving force for research in
type systems, static analysis and compiler techniques for this lan-
guage. Many of these techniques aim to reign in some of the most
dynamic features of the language, yet little seems to be known
about how programmers actually utilize the language or these fea-
tures. In this paper we perform an empirical study of the dynamic
behavior of a corpus of widely-used JavaScript programs, and an-
alyze how and why the dynamic features are used. We report on
the degree of dynamism that is exhibited by these JavaScript pro-
grams and compare that with assumptions commonly made in the
literature and accepted industry benchmark suites.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms Experimentation, Languages, Measurement

Keywords Dynamic Behavior, Execution Tracing, Dynamic Met-
rics, Program Analysis, JavaScript

1. Introduction
JavaScript1 is an object-oriented language designed in 1995 by
Brendan Eich at Netscape to allow non-programmers to extend
web sites with client-side executable code. Unlike more traditional
languages such as Java, C# or even Smalltalk, it does not have
classes, and does not encourage encapsulation or even structured
programming. Instead JavaScript strives to maximize flexibility.
JavaScript’s success is undeniable. As a data point, it is used by
97 out of the web’s 100 most popular sites.2 The language is also

1 The language is standardized as ECMAScript [16]. Its various dialects
(and their extensions) are referred to by names such as JScript, Ac-
tionScript, and JavaScript (officially, Mozilla’s implementation of EC-
MAScript). In this paper, we refer to all implementations collectively as
JavaScript.
2 http://www.alexa.com
2 http://code.google.com/closure/compiler/
3http://code.google.com/webtoolkit/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

becoming a general purpose computing platform with office appli-
cations, browsers and development environments [15] being devel-
oped in JavaScript. It has been dubbed the “assembly language”
of the Internet and is targeted by code generators from the likes
of Java2,3 and Scheme [20]. In response to this success, JavaScript
has started to garner academic attention and respect. Researchers
have focused on three main problems: security, correctness and
performance. Security is arguably JavaScript’s most pressing prob-
lem: a number of attacks have been discovered that exploit the lan-
guage’s dynamism (mostly the ability to access and modify shared
objects and to inject code via eval). Researchers have proposed ap-
proaches that marry static analysis and runtime monitoring to pre-
vent a subset of known attacks [6, 12, 21, 27, 26]. Another strand of
research has tried to investigate how to provide better tools for de-
velopers for catching errors early. Being a weakly typed language
with no type declarations and only run-time checking of calls and
field accesses, it is natural to try to provide a static type system
for JavaScript [2, 1, 3, 24, 13]. Finally, after many years of neglect,
modern implementations of JavaScript have started to appear which
use state of the art just-in-time compilation techniques [10].

In comparison to other mainstream object-oriented languages,
JavaScript stakes a rather extreme position in the spectrum of dy-
namicity. Everything can be modified, from the fields and methods
of an object to its parents. This presents a challenge to static analy-
sis techniques, to type systems, and to compiler optimizations, all
of which leverage the parts of a program that are fixed to make guar-
antees about that program’s run-time behavior. If nothing is fixed
then there is very little that traditional techniques can do. To cope
with this, researchers have considered subsets of JavaScript based
on “reasonable” (or sane) assumptions about common behavioral
patterns of programs. Similarly, JavaScript implementations are of-
ten compared using benchmarks which were ported from other lan-
guages and are relatively simple. What if these assumptions were
wrong and the benchmarks were not representative of actual work-
loads? Then it could well be the case that type systems and static
analysis techniques developed for JavaScript have little or no appli-
cability to real-world programs, and that compiler writers would be
steered towards implementing optimizations that make unrealistic
benchmark code run fast but have little effect in the real world.

This paper sets out to characterize JavaScript program behav-
ior by analyzing execution traces recorded from a large corpus of
real-world programs. To obtain those traces we have instrumented
a popular web browser and interacted with 103 web sites. For each
site multiple traces were recorded. These traces were then analyzed
to produce behavioral data about the programs. Source code cap-
tured when the programs were loaded was analyzed to yield static
metrics. In addition to web sites, we analyzed three widely used
benchmark suites as well as several applications. We report both on
traditional program metrics as well as metrics that are more indica-
tive of the degree of dynamism exhibited by JavaScript programs
in the wild.

2. Motivation and Related Work
The original impetus for our interest in JavaScript was to assess the
feasibility of a static type system able to successfully and mean-
ingfully type check existing JavaScript programs. Other dynamic
languages such as Scheme have had recent success introducing
gradual typing systems [25], but they have stopped short of type
checking object-oriented extensions (implemented by macros in
Scheme). For JavaScript, Anderson et al. proposed a type system
with definite and potential types [2, 1, 3], while Heidegger and
Thiemann following up on some of their earlier work [24, 18] pro-
pose recency types in [13], and Furr et al. proposed a related system
for DRuby [9]. While all of these type systems acknowledge some
minor simplifications to the target language, they rely on fairly sim-
ilar assumptions. For instance, Thiemann writes: “Usually, no fur-
ther properties are defined after the initialization and the type of
the properties rarely changes.” This suggests that object types are
stable at run-time and can be described using, e.g., traditional row-
types. In fact all the proposals take the view that an object’s type
should be the sum of all possible fields and methods that it could
contain, with some of them being undefined; they differ mostly on
how to perform strong updates to avoid polluting all properties with
undefined values. Interestingly, language implementors make sim-
ilar assumptions. For instance, Google’s V8 JavaScript engine is
reported to optimistically associate “classes” to objects on the as-
sumption that their shape will not change too much, though with
a fallback case for highly dynamic objects 3. This design is simi-
lar to implementations of one of JavaScript’s influences, Self [5],
and is expected to work for the same reasons. As the above men-
tioned hypothesis is crucial for the applicability and usefulness of
the results, it deserves careful study. In fact, we have found a num-
ber of similar assumptions in the literature which we list below. We
first review the salient features of the language to provide sufficient
background for readers unfamiliar with JavaScript.

JavaScript in a Nutshell. JavaScript is an imperative, object-
oriented language with Java-like syntax, but unlike Java it employs
a prototype-based object system. An object is a set of properties,
a mutable map from strings to values. A property that evaluates
to a closure and is called using the context of its parent object
plays the role of a method in Java. Each object has prototype field
which refers to another object. Property lookup involves searching
the current object, then its parent, and its parent until the property
is found. The JavaScript object system is extremely flexible. As a
result, it is difficult to constrain the behavior of any given object.
For example, it is possible to modify the contents of any prototype
at any time or to replace a prototype field altogether. In JavaScript,
any function can be a constructor for a “class” of objects, and
contains a prototype field, initially referencing an empty object.
The new keyword creates an object based on the prototype field and
using the function as a constructor. The semantics of new is simple,
but unusual: first, an empty object is created, with its parent set
to the object referenced by the prototype field of the constructor
function; second, the constructor is called, with this bound to
the new object. The object referenced by the keyword this is not
determined by lexical scoping, but instead by the caller; finally the
return value from the constructor (if any) is discarded, and the new
expression evaluates to this.

Common Assumptions about the dynamic behavior of JavaScript.
We proceed to enumerate the explicit and implicit assumptions that
are commonly found in the literature and in implementations.

1. The prototype hierarchy is invariant. The assumption that the
prototype hierarchy does not change after an object is created

3 As reported in a presentation by Kevin Millikin at Google Developer Day
2008.

is so central to the type system work that [2, 3] chose to not
even model prototypes. Research on static analysis typically
does not mention prototype updates [6, 12, 24, 17]. Yet, any
modification to the prototype hierarchy can potentially impact
the control flow graph of the application just as well as the types
of affected objects.

2. Properties are added at object initialization. Folklore holds
that there is something akin to an “initialization phase” in dy-
namic languages where most of the dynamic activity occurs and
after which the application is mostly static [14]. For JavaScript
this is embodied by the assumption that most changes to the
fields and methods of objects occur at initialization, and thus
that it is reasonable to assign an almost complete type to ob-
jects at creation, leaving a small number of properties as poten-
tial [3, 24, 13, 2].

3. Properties are rarely deleted. Removal of methods or fields
is difficult to accommodate in a type system as it permits non-
monotonic evolution of types that breaks subtyping guarantees
usually enforced in modern typed languages. If deletion is an
exceptional occurrence (and one that can be predicted), one
could use potential types for properties that may be deleted in
the future. But, this would reduce the benefits of having a type
system in the first place, which is probably why related work
chooses to forbid it [3, 24, 18, 2]. Static analysis approaches
are usually a bit more tolerant to imprecision and can handle
deletes, but we have not found any explanation of its handling
in existing data flow analysis techniques ([12, 6, 17]).

4. The use of eval is infrequent and does not affect seman-
tics. The use of eval on arbitrary strings has the potential of
invalidating any results obtained by static analysis or static type
checking. Thus many works simply ignore it [3, 17, 24, 2],
while other assume that uses are either trivial or related to de-
serialization using the JSON protocol [12, 18].

5. Declared function signatures are indicative of types. Type
systems for JavaScript typically assume that the declared arity
of a function is representative of the way it will be invoked [3,
24, 2]. This is not necessarily the case because JavaScript allows
calls with different arities.

6. Program size is modest. Some papers justify very expen-
sive analyses with the explicit assumption that handwritten
JavaScript programs are small [18], and others implicitly rely
on this as they present analyses which would not scale to large
systems [17, 12].

7. Call-site dynamism is low. Some JavaScript implementations
such as Google V8 rely on well-known implementation tech-
niques to optimize JavaScript programs such as creating classes
(in the Java sense) for objects and inline caches. These tech-
niques will lead to good performance only if the behavior of
JavaScript is broadly similar to that of other object-oriented lan-
guages.

8. Execution time is dominated by hot loops. Trace-based Just-
in-time compilers such as TraceMonkey [10] rely on the tra-
ditional assumption that execution time is dominated by small
loops.

9. Industry benchmarks are representative of JavaScript work-
loads. Standard benchmark suites such as SunSpider, Dro-
maeo and V8, are used to tune and compare JavaScript im-
plementations and to evaluate the accuracy of static analysis
techniques [18]. But conclusions obtained from use of those
benchmarks are only meaningful if they accurately represent
the range of JavaScript workloads in the wild.

The goal of this paper is to provide supporting evidence to either
confirm or invalidate these assumptions. We are not disputing the
validity of previous research, as even if a couple of the above
assumptions proved to be unfounded, previous work can still serve
as a useful starting point for handling full JavaScript. But we do
want to highlight limitations to widespread adoption of existing
techniques and point to challenges that should be addressed in
future research.

Related Work. Until now, to the best of our knowledge, there
has been no study of the dynamic behavior of JavaScript programs
of comparable depth or breadth. Ratanaworabhan et al. have per-
formed a similar study concurrently to our own, and its results are
similar to ours [22]. There have been studies of JavaScript’s dy-
namic behavior as it applies to security [28] [8], but the behaviors
studied were restricted to those particularly relevant to security. We
conducted a small scale study of JavaScript and reported prelimi-
nary results in [19], and those results are consistent with the new
results presented here. Holkner and Harland [14] have conducted a
study of the use of dynamic features (addition and deletion of fields
and methods) in the Python programming language. Their study
focused on a smaller set of programs and concluded that there is
a clear phase distinction. In their corpus dynamic features occur
mostly in the initialization phase of programs and less so during
the main computation. Our results suggest that JavaScript is more
dynamic than Python in practice. There are many studies of the
runtime use of selected features of object-oriented languages. For
example, Garret et al. reported on the dynamism of message sends
in Self [11], Calder et al. characterized the difference of between C
and C++ programs in [4], and Temporo et al. studied the usage of
inheritance in Java in [23]. These previous papers study in great de-
tail one particular aspect of each language. In this particular work,
we strive for an overview of JavaScript, and leave detailed analysis
for future work. Finally, we were inspired by the work of Dufour et
al. [7] and their rigorous framework for discussing runtime metrics
for Java.

3. Tracing and Analysis Infrastructure
The tracing infrastructure developed for this paper is based on an
instrumented version of the WebKit 4 web browser engine inte-
grated into Apple’s Safari browser. While there are standalone in-
terpreters available, they would not be able to deal with the mix-
ture of DOM and AJAX that is commonplace in most JavaScript-
enabled sites. For flexibility, analysis is performed offline. Our in-
strumented browser records a trace containing most operations per-
formed by the interpreter (reads, writes, deletes, calls, defines, etc.)
as well as events for garbage collection and source file loads. In-
vocations to eval trigger an event similar to the one for source file
loads, and the evaluated string is saved and traced like any other
part of the program’s execution. Complete traces are compressed
and stored to disk. While it does have some performance overhead,
our instrumentation does not cause a noticeable slowdown in inter-
active applications, and none of our users complained about per-
formance. Traces are analyzed offline and the results are stored in
a database which is then mined for data. The offline trace analy-
sis component is essentially an abstract interpreter for the event
stream. It is able to replay any trace creating an abstract represen-
tation of the heap state of the corresponding JavaScript program.
The trace analyzer maintains rich and customizable historical in-
formation about the program’s behavior, such as access histories of
each object, call sites and allocation sites, and so on. Finally, sev-
eral static analyses (eval classification, code size metrics) are per-

4 webkit.org.

formed on the recovered source files using the parsing framework
from the Rhino JavaScript compiler.5

As WebKit does not hide its identity to JavaScript code, it is pos-
sible for code to exhibit behavior peculiar to WebKit. Techniques
like this are often used to work around bugs in JavaScript imple-
mentations or browsers. For instance, the Prototype JavaScript li-
brary includes the following check for WebKit.

WebKit: ua.indexOf(’AppleWebKit/’) > -1,

It then uses that check to create different implementations of
setOpacity, getRootElement, shouldUseXPath and other functions
which may exhibit browser-dependent behavior. Although this does
introduce a possible bias which is very difficult to detect, all other
JavaScript implementations are equally detectable and so create
comparable bias. We would be interested in comparable studies
using other engines, to determine whether the results differ in sig-
nificant ways.

4. Corpus and Methodology
We have selected 100 web sites based on the Alexa list of most
popular sites on the Internet, along with a number of sites of par-
ticular interest (including 280slides, Lively Kernel, and a medley
of different web sites visited in a single session). Moreover we also
recorded traces for the three main industry benchmark suites (Sun-
Spider, Dromaeo, and V8). For each of these sites we asked several
of our colleagues to interact with the site in a “meaningful” manner.
Each interaction with a different web site was saved in a different
trace. Multiple traces for the same site are averaged in our metrics.

In the remainder of this paper we focus on the results of 17 sites
that we believe to be representative of the full range of behaviors
and usage of popular libraries. The list of sites we have retained is
shown in Figure 1. Data for all the web sites, as well as our tracing
and analysis framework, database, and graphs are available on the
project web site6. For each site, we also list publicly-available
JavaScript libraries utilized by the site, if any. Sites that use the
same libraries tend to have similar coding styles and program
structure. It is instructive to see whether similarities also exist in
the dynamic behavior of these programs, regardless of different
application logic and use cases.

Alias Library URL
280S Objective-J1 280slides.com
BING bing.com
BLOG blogger.com

DIGG jQuery2 digg.com
EBAY ebay.com
FBOK facebook.com
FLKR flickr.com

GMAP Closure3 maps.google.com
GMIL Closure gmail.com
GOGL Closure google.com

ISHK Prototype4 imageshack.us
LIVE research.sun.com/projects/lively

MECM SproutCore5 me.com
TWIT jQuery twitter.com
WIKI wikipedia.com
WORD jQuery wordpress.com
YTUB youtube.com
ALL Average over 103 sites

Figure 1. Selected JavaScript-enabled web sites.
1 cappuccino.org 2jquery.com 3code.google.com/closure

4prototypejs.org 5sproutcore.com

5 www.mozilla.org/rhino.
6 http://www.cs.purdue.edu/homes/gkrichar/js

5. General Program Metrics
We start with general program metrics that can easily be related to
less-dynamic languages.

5.1 Corpus Size
Figure 2 gives the size of the programs loaded by the JavaScript
interpreter (including strings passed to eval) in bytes. They range
from small, with 280S at only 116 KB, to quite large with FBOK at
14 MB, and include all libraries required by the applications. These
numbers include the results of multiple page loads of the same
code, as from the interpreter’s stand point there is no guarantee
that requesting the same file twice will return the same result. The
second column gives the unique lines of code. Notice that code size
remains large, topping at 1.7MB for GMIL. The third column gives
the length of traces in events. This is not directly correlated to the
computation time: since most sites using JavaScript are interactive
in nature, there is unfortunately no meaningful notion of wall-clock
time that we can use to gauge computational effort. The number of
recorded events vary from thousands to millions. Not surprisingly,
LIVE, which is a programming environment written in JavaScript,
generates the biggest traces, followed by MECM and GMAP, two
highly-interactive and data-intensive web sites. The fourth column
of the figure gives the number of functions statically occurring in
the loaded code including functions added by eval expressions.

A few dynamic behaviors are expected to be similar in most
languages. For example, the 90/10 rule holds, i.e. 90% of execu-
tion time is spent in 10% of functions or less. The column labeled
Hot gives the number of functions accounting for 90% of execu-
tion. This metric is obtained by counting the number of trace events
recorded in each function, sorting the functions by size and count-
ing the functions that comprise 90% of the events. ISHK and WORD
spend 90% of their time in 1% or less of the program’s functions.
All other programs range between 6% and 15% hot with a median
of 8%. The numbers are noticeably higher than the hot percentages
for Java programs reported in [7] where the average is 3%. From
the point of view of an optimizing compiler, smaller numbers are

Unique
Site Source source Trace Func. Hot Live

size size size count
280S 116 KB 81KB 11,931 K 4,293 6.8% 44%
BING 815 KB 186KB 1,199 K 2,457 6.4% 46%
BLOG 1,347 KB 775KB 91 K 5,087 11.5% 16%
DIGG 1,106 KB 759KB 1,734 K 2,957 8.7% 39%
EBAY 3,156 KB 1,034KB 2,239 K 10,791 11.7% 31%
FBOK 14,904 KB 1,604KB 5,309 K 43,469 5.8% 19%
FLKR 8,862 KB 246KB 490 K 19,149 14.0% 13%
GMAP 1,736 KB 833KB 13,125 K 5,146 7.8% 61%
GMIL 2,084 KB 1,719KB 6,047 K 10,761 7.6% 38%
GOGL 2,376 KB 839KB 1,815 K 10,250 15.0% 28%
ISHK 915 KB 420KB 5,376 K 2,862 0.6% 35%
LIVE 1,081 KB 938KB 48,324 K 2,936 7.4% 49%
MECM 4,615 KB 646KB 14,084 K 14,401 6.6% 24%
TWIT 837 KB 160KB 2,252 K 2,967 9.2% 45%
WIKI 1,009 KB 115KB 53 K 1,226 14.6% 24%
WORD 1,386 KB 235KB 6,403 K 3,118 1.0% 42%
YTUB 2,897 KB 562KB 541 K 11,321 13.0% 22%
ALL 2,544 KB 790KB 4,151 K 10,625 2.2% 26%

Figure 2. Program sizes. “Source size” is the total amount of
source seen by the interpreter, including source loaded more than
once and evals. “Unique source size” excludes multiple loads of
the same source, but still includes eval.

better. We also report the proportion of live functions, functions
that have been executed at least once. This number ranges between
13% (FLKR) and 61% (GMAP). Due in part to the popularity of
large framework-like JavaScript libraries, in each site no more than
61% of the defined functions are live, with a median of 35% live.
The proportion of live to loaded code is slightly higher than that
observed for Java programs [7], but this is not surprising when one
considers the typical size of JavaScript versus Java libraries and
programs.

 0
 2

0
 4

0
 6

0
 8

0
10

0
12

0
14

0
16

0
18

0
20

0

28
0S

B
IN

G

B
LO

G

D
IG

G

E
B

AY

F
B

O
K

F
LK

R

G
M

A
P

G
M

IL

G
O

G
L

IS
H

K

LI
V

E

M
E

C
M

T
W

IT

W
IK

I

Y
T

U
B

A
LL

Figure 3. Static function size. The per-site quartiles and median
static function size, measured by the number of AST nodes gener-
ated from parsing the function.

 0
 8

0
16

0
24

0
32

0
40

0
48

0
56

0
64

0
72

0
80

0

28
0S

B
IN

G

B
LO

G

D
IG

G

E
B

AY

F
B

O
K

F
LK

R

G
M

A
P

G
M

IL

G
O

G
L

IS
H

K

LI
V

E

M
E

C
M

T
W

IT

W
IK

I

W
O

R
D

A
LL

Figure 4. Dynamic function size. The per-site quartiles and me-
dian function size, measured in the number of trace events.

Figure 3 gives the average size of the code functions occurring
in the JavaScript program source. These seem fairly consistent
across sites. More interestingly, Figure 4 shows the number of
events per function, which roughly corresponds to the number of
bytecodes evaluated by the interpreter (note that some low-level
bytecodes such as branches and arithmetic are not recorded in the
trace). It is interesting to note that the median is fairly high, around
20 events. This suggests that, in contrast to Java, there are fewer
short methods (e.g. accessors) in JavaScript and thus possibly fewer
opportunities to benefit from inlining optimizations.

5.2 Instruction Mix
The instruction mix of JavaScript program is also fairly traditional:
more read operations are expected than write operations. As shown
in Figure 5, reads are far more common than writes: over all
traces the proportion of reads to writes is 6 to 1. Deletes comprise
only .1% of all events. That graph further breaks reads, writes
and deletes into various specific types; prop refers to accesses

28
0s

Ap
m
e

Bi
ng

Bl
og

D
ig
g

Fb
ok Fl
kr

G
m
ai

G
m
ap

G
oo
g

IS
hk

Lv
ly

Tw
it

W
ik
i

W
or
d

Eb
ay

YT
ub Al
l*

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Write_prop
Write_hash
Write_indx
Read_prop
Read_hash
Read_indx
Delet_prop
Delet_hash
Delet_indx
Define
Create
Call
Throw
Catch

28
0s

Ap
m
e

Bi
ng

Bl
og

D
ig
g

Fb
ok Fl
kr

G
m
ai

G
m
ap

G
oo
g

IS
hk

Lv
ly

Tw
it

W
ik
i

W
or
d

Eb
ay

YT
ub Al
l*

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Write_prop
Write_hash
Write_indx
Read_prop
Read_hash
Read_indx
Delet_prop
Delet_hash
Delet_indx
Define
Create
Call
Throw
Catch

28
0s

Ap
m
e

Bi
ng

Bl
og

D
ig
g

Fb
ok Fl
kr

G
m
ai

G
m
ap

G
oo
g

IS
hk

Lv
ly

Tw
it

W
ik
i

W
or
d

Eb
ay

YT
ub Al
l*

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Write_prop
Write_hash
Write_indx
Read_prop
Read_hash
Read_indx
Delet_prop
Delet_hash
Delet_indx
Define
Create
Call
Throw
Catch

28
0s

Ap
m
e

Bi
ng

Bl
og

D
ig
g

Fb
ok Fl
kr

G
m
ai

G
m
ap

G
oo
g

IS
hk

Lv
ly

Tw
it

W
ik
i

W
or
d

Eb
ay

YT
ub Al
l*

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Write_prop
Write_hash
Write_indx
Read_prop
Read_hash
Read_indx
Delet_prop
Delet_hash
Delet_indx
Define
Create
Call
Throw
Catch

28
0s

Ap
m
e

Bi
ng

Bl
og

D
ig
g

Fb
ok Fl
kr

G
m
ai

G
m
ap

G
oo
g

IS
hk

Lv
ly

Tw
it

W
ik
i

W
or
d

Eb
ay

YT
ub Al
l*

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Write_prop
Write_hash
Write_indx
Read_prop
Read_hash
Read_indx
Delet_prop
Delet_hash
Delet_indx
Define
Create
Call
Throw
Catch

28
0S

BI
NG

BL
O
G

DI
G
G

EB
AY

FB
O
K

FL
KR

G
M
IL

G
M
AP

G
O
G
L

IS
HK

LI
VE

M
EC

M

TW
IT

W
IK
I

W
O
RD

YT
UB

AL
L*

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

28
0S

BI
NG

BL
O
G

DI
G
G

EB
AY

FB
O
K

FL
KR

G
M
IL

G
M
AP

G
O
G
L

IS
HK

LI
VE

M
EC

M

TW
IT

W
IK
I

W
O
RD

YT
UB

AL
L*

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5. Instruction mix. The per-site proportion of read, write,
delete, call instructions (averaged over multiple traces).

28
0S

BI
NG

BL
O

G

DI
G

G

EB
AY

FB
O

K

FL
KR

G
M

AP

G
M

IL

G
O

G
L

IS
HK

LI
VE

M
EC

M

TW
IT

W
IK

I

W
O

RD

YT
UB AL

L

Pr
ot

ot
yp

e
ch

ai
n

le
ng

th

 1
 2

 3
 4

 5
 6

 7
 8

 9
10

28
0S

B
IN

G

B
LO

G

D
IG

G

E
B

AY

FB
O

K

FL
K

R

G
M

A
P

G
M

IL

G
O

G
L

IS
H

K

LI
V

E

M
E

C
M

TW
IT

W
IK

I

W
O

R
D

Y
TU

B

A
LL

P
ro

to
ty

pe
 c

ha
in

 le
ng

th

 1
 2

 3
 4

 5
 6

 7
 8

 9
10

Figure 6. Prototype chain length. The per-site quartile and max-
imum prototype chain lengths.

using dot notation (e.g. x.f), hash refers to access using indexing
notation (e.g. x[s]), indx refers to accesses using indexing notation
with a numeric argument. The overall number of calls is high,
20%, as the interpreter does not perform any inlining. Exception
handling is rather infrequent with a grand total of 1,328 throws
over 478 million trace events. There are some outliers such as ISHK,
WORD and DIGG where updates are a much smaller proportion of
operations (and influenced by the sheer number of objects in these
sites), but otherwise the traces are consistent.

5.3 Prototype Chains
One higher-level metric is the length of an object’s prototype chain,
which is the number of prototype objects that may potentially be
traversed in order to find an object’s inherited property. This is
roughly comparable to metrics of the depth of class hierarchies in
class-based languages, such as the Depth of Inheritance (DIT) met-
ric discussed in [23]. Studies of C++ programs mention a maximum
DIT of 8 and a median of 1, whereas Smalltalk has a median of 3
and maximum of 10. Figure 6 shows that in all but four sites, the
median prototype chain length is 1. Note that we start our graph at
chain length 1, the minimum. All objects except Object.prototype
have at least one prototype, which if unspecified, defaults to the
Object.prototype. The maximum observed prototype chain length
is 10. The majority of sites do not seem to use prototypes for code
reuse, but this is possibly explained by the existence of other ways
to achieve code reuse in JavaScript (i.e., the ability to assign clo-
sures directly into a field of an object). The programs that do utilize
prototypes have similar inheritance properties to Java [23].

5.4 Object Kinds
Figure 7 breaks down the kinds of objects allocated at run-time
into a number of categories. There are a number of frequently used
built-in data types: dates (Date), regular expressions (RegExp), doc-
ument and layout objects (DOM), arrays (Array) and runtime er-
rors. The remaining objects are separated into four groups: anony-
mous objects, instances, functions, and prototypes. Anonymous ob-
jects are constructed with an object literal using the {...} notation,
while instances are constructed by calls of the form new C(...).
A function object is created for every function expression eval-
uated by the interpreter and a prototype object is automatically
added to every function in case it is used as a constructor. Over
all sites and traces, arrays account for 31% of objects allocated.
Dates and DOM objects come next with 12% and 14%, respec-
tively. Functions, prototypes, and instances each account for 10%
of the allocated objects, and finally anonymous objects account for

28
0S

B
IN

G

B
LO

G

D
IG

G

F
B

O
K

F
LK

R

E
B

AY

G
O

G
L

G
M

A
P

G
M

IL

IS
H

K

LI
V

E

M
E

C
M

T
W

IT

W
IK

I

W
O

R
D

Y
T

U
B

A
LL

*

anonymous
dom

arrays
dates

regexps
functions

instances
errors

prototypes

Figure 7. Kinds of allocated objects. The per-site proportion of
runtime object kinds (averaged over multiple traces).

7%. It is interesting to observe that some sites are outliers: for in-
stance, the proportion of objects allocated by WORD is dominated
by 150K Date objects, and similarly for DIGG 7. Other sites, LIVE
and 280S notably, are more array-intensive. It should be noted that
in JavaScript, any object can be treated as an array (using the index
notation x[3]) but our analysis has shown that in practice, only
objects created by the built-in Array constructor are routinely ac-
cessed by this syntax with numeric indices.

6. Measuring Program Dynamism
Different dimensions of dynamism are captured in the execution
traces; we discuss them next.

6.1 Call Site Dynamism
Dynamic binding is a central feature of object-oriented program-
ming. Many authors have looked at the degree of polymorphism of
individual call sites in the program source as a reflection of how
“object-oriented” a given program is. More pragmatically, when a
call site is known to be monomorphic, i.e. it always invokes the
same method, then the dispatching code can be optimized and the
call is a candidate for inlining. It is not unusual to be able to identify
that over 90% of call sites are monomorphic in Java. To estimate
polymorphism in JavaScript, one must first overcome a complica-
tion. A common programming idiom in JavaScript is to create ob-
jects inline. So the following code fragment

for (...) { ... = { f : function (x) { return x; } }; }

will create many objects, that all have a method f(), but each has
a different function object bound to f. Naively, one could count
calls, x.f(), with different receivers as being polymorphic. We ar-
gue that for our purposes it is preferable to count a call site as poly-
morphic only if it dispatches to a function with a different body, i.e.
calls to clones should be considered monomorphic. Figure 8 shows
the frequency of clones across all traces. While 150,422 functions
objects have a distinct body, we found 16 bodies that are shared by
tens of thousands of function objects, with 1 function body shared
by 41,244 objects. GMAP, LIVE and MECM each had function bod-
ies with over 10,000 associated function objects.

Figure 9 demonstrates that only 81% of call sites in JavaScript
are actually monomorphic; this is an upper bound for what a com-
piler or static analysis can hope to identify. In practice, it is likely
that there are fewer opportunities for devirtualization and inlining
in JavaScript programs than in Java programs. It is noteworthy that
every program has at least one megamorphic call site, with a maxi-
mum of one call site having 1,437 different targets in 280S (which
is otherwise perfectly predictable with 99.99% of the call sites be-
ing monomorphic!). BING, FBOK, FLKR, GMIL, GMAP and GOGL
each had at least one call site with more than 200 targets. FBOK is
another outlier with 3.5% of the call sites having 5 or more targets.

6.2 Function Variadicity
The declared arity of a function in JavaScript does not have to
be respected by callers. If too few arguments are supplied, the
value of the remaining arguments will be set to undefined. If more
arguments are supplied than expected, the additional arguments
are accessible in the arguments variable, which is an array-like
object containing all arguments and a reference to the caller and
callee. Furthermore, any function can be called with an arbitrary
number of arguments and an arbitrary context by using the built-in

7 Upon further investigation, both sites make extensive use of certain UI/an-
imation libraries that allocate Date objects for use with callback timers.

1 10 100 1000 10000

1
10

0
10

00
0

Figure 8. Clones. Plots the number of function objects per func-
tion body (x-axis) and the sum of such function bodies (y-axis) over
all traces, in log-scale. For example, the second from left point rep-
resents the roughly 10,000 function bodies that each have 2 corre-
sponding function objects (and thus, 1 clone).

Callsites with N function bodies
Site 1 2 3 4 >5 Max
280S 99.9% 0.0% 0.0% 0.0% 0.0% 1,437
BING 93.6% 4.8% 1.0% 0.3% 0.3% 274
BLOG 95.4% 3.4% 0.5% 0.2% 0.5% 95
DIGG 95.4% 3.2% 0.4% 0.3% 0.7% 44
EBAY 91.5% 7.1% 0.5% 0.5% 0.5% 143
FBOK 76.3% 14.8% 3.7% 1.7% 3.5% 982
FLKR 81.9% 13.2% 3.6% 0.5% 0.8% 244
GMAP 98.2% 0.8% 0.4% 0.2% 0.4% 345
GMIL 98.4% 1.2% 0.2% 0.1% 0.2% 800
GOGL 93.1% 5.5% 0.6% 0.3% 0.6% 1,042
ISHK 90.2% 8.1% 1.0% 0.0% 0.8% 42
LIVE 97.0% 1.7% 0.5% 0.3% 0.5% 115
MECM 94.2% 4.1% 1.2% 0.2% 0.4% 106
TWIT 89.5% 7.2% 1.7% 0.3% 1.3% 60
WIKI 87.9% 6.7% 1.9% 0.2% 3.2% 32
WORD 86.8% 7.9% 2.7% 1.9% 0.6% 106
YTUB 83.6% 10.6% 5.4% 0.1% 0.4% 183
All 81.2% 12.1% 3.0% 1.2% 2.5% 1,437

Figure 9. Call site polymorphism. Number of different function
bodies invoked from a particular callsite (averaged over multiple
traces).

call method8. As such, functions may be variadic without being
declared as variadic, and may have any degree of variadicity.

Many built-in functions in JavaScript are variadic: some promi-
nent examples include call, Array methods like push, pop, slice,
and even the Array constructor itself (which initializes an array
with any number of provided arguments). Libraries such as Proto-
type and jQuery use call and apply frequently to control the execu-

8 The built-in function apply is identical to call in utility, but avoids a
variadic design by expecting a context and an array argument instead of a
context and a variable number of arguments.

Functions with N distinct arities
Site 1 2 3 4 >5 Max
280S 99.3% 0.6% 0.0% 0.1% 0.1% 9
BING 94.2% 4.9% 0.7% 0.2% 0.0% 4
BLOG 97.1% 2.3% 0.4% 0.2% 0.0% 4
DIGG 92.5% 6.3% 0.9% 0.3% 0.1% 5
EBAY 95.9% 3.6% 0.3% 0.0% 0.3% 9
FBOK 93.9% 4.8% 0.6% 0.6% 0.1% 6
FLKR 94.2% 4.6% 0.9% 0.3% 0.0% 4
GMAP 93.4% 5.5% 0.6% 0.3% 0.2% 6
GMIL 95.3% 3.8% 0.6% 0.2% 0.2% 30
GOGL 94.6% 4.3% 0.7% 0.2% 0.2% 9
ISHK 97.6% 2.3% 0.1% 0.0% 0.0% 3
LIVE 92.7% 6.1% 0.8% 0.3% 0.1% 7
MECM 91.9% 6.5% 0.6% 0.5% 0.5% 7
TWIT 90.9% 7.4% 1.3% 0.5% 0.0% 4
WIKI 96.7% 3.3% 0.0% 0.0% 0.0% 2
WORD 92.6% 6.6% 0.6% 0.2% 0.0% 4
YTUB 98.5% 1.4% 0.1% 0.0% 0.0% 4
All 93.5% 4.8% 0.7% 0.4% 0.6% 30

Figure 10. Function variadicity. Proportion of functions used
variadically.

tion context when invoking callback closures. These two libraries
(and many other applications) also use arrays for their internal rep-
resentation, which leads to many uses of variadic Array-related
functions. Depending on the coding style, functions with optional
arguments can either declare these optional arguments (leading to
some calls of arity less than the declared arity), or test for the pres-
ence of optional (unnamed) arguments in the arguments object.
Both coding styles are seen in real-world JavaScript programs, so
both calls of arity less than and calls of arity greater than that de-
clared are often observed.

In practice, variadic functions are common and were observed
in every website analyzed. Figure 10 indicates the portion of func-
tion bodies which are called with differing arities (that is, which are
used variadically). In all sites, at least 90% of functions are non-
variadic. However, highly-variadic functions, with as many as 30
distinct arities, also occur, and few sites have less than 5% variadic
functions.

6.3 Uses of eval
One of the most dynamic features of JavaScript, and of most dy-
namic languages, is eval which runs arbitrary code provided as
a string. A key question for any static approach is how that fea-
ture is used. Figure 11 shows that all sites use it, from a handful
of times in ISHK to 428 times for BLOG. Clearly this means that
eval can’t be discounted. The next question is thus: what do pro-
grams do within eval strings? Figure 11 further breaks down evals
in three sub-categories. The first one (JSON) is a simple form of
deserialization. JavaScript Object Notation (JSON) is a standard
format for exchanging data in the form of strings, the syntax of
which coincides with that for JavaScript object literals. Therefore,
evaling a JSON string results in the construction of a new object.
This is a relatively innocuous use of eval and in sites such as FBOK
it accounts for the vast majority of calls. The second category ap-
pearing in Figure 11 (trivial) is that of “trivial” uses of eval. This
is another surprisingly common use in which the argument is an
identifier. Trivial uses of eval are essentially a very powerful form
of reflection. Consider

if (eval("flash"+i+"Installed")==true) ...

BL
O

G

FB
O

K

EB
AY

LI
VE

M
EC

M

DI
G

G

BI
NG

G
O

G
L

FL
KR

G
M

IL

G
M

AP

28
0S

W
O

RD

TW
IT

YT
UB

IS
HK

0
10

0
20

0
30

0
40

0
50

0

JSON
trivial
arbitrary code

BL
O

G

FB
O

K

EB
AY

LI
VE

M
EC

M

DI
G

G

BI
NG

G
O

G
L

FL
KR

G
M

IL

G
M

AP

28
0S

W
O

RD

TW
IT

YT
UB

IS
HK

0
10

0
20

0
30

0
40

0
50

0

JSON
trivial
arbitrary code

BL
O

G

FB
O

K

EB
AY

LI
VE

M
EC

M

DI
G

G

BI
NG

G
O

G
L

FL
KR

G
M

IL

G
M

AP

28
0S

W
O

RD

TW
IT

YT
UB

IS
HK

0
10

0
20

0
30

0
40

0
50

0

JSON
trivial
arbitrary code

Figure 11. Uses of eval. Count of the invocations of eval (aver-
aged over multiple traces). Sites sorted by total number of invoca-
tions, descending.

from FLKR, which is called multiple times to perform a different
action depending on what version of Flash is installed, referencing
the field i in the current scope. The remaining invocations of eval
(arbitrary code) are by a wide margin the most common, and are
often complicated code, involving variable assignment, changing
functions, etc.

It is important to stress here the sheer variety of arbitrary code.
The following is a random selection of eval’d arbitrary code strings
throughout the traces, edited only for readability and privacy:

• window.dc_AdLinkBold = false

• playlist[204] = new function() {
this.album_id = 204; this.album_name = "[elided]";
this.album_rating_avg = 3.9; this.OA = 1255051920;
this.album_rating_user = -0.1;
};

• this.load = function() {
var a = arguments, len = a.length, s = "";
for (var i=0; i<len; i++) s += ",a[" + i + "]";
return eval(’this._processEvent("load"’ + s + ’)’);
}

• typeof(l[i].parent.onAfterLoad) == ’function’

• objRef.onHandleInteraction=new Function()

It is clear that eval is significant to the logic of many JavaScript
programs, and furthermore that its behavior is neither constrained
nor consistent in real programs. Some of these behaviors would
be quite difficult to emulate without eval, as they perform arbitrary
changes to the environment of the JavaScript program. Every possi-
ble change that eval’d code could make would need to be predicted
ahead of time and implemented in support functions.

JavaScript and the DOM provide means other than eval to
inject code at runtime, such as the document.write of a script tag,
or document.createElement("script");, but these methods are
entirely reliant on the browser’s document object model. Since our
tracing infrastructure instrumented only the JavaScript interpreter

and not the rest of the browser, we were unable to detect these other
mechanisms.

Somewhat related to trivial uses of eval is JavaScript’s hashmap
syntax for accessing fields. The following two expressions are
equivalent: l.map and l["map"]. However, the latter may be used
with any string constructed at runtime, even strings that are not
syntactically valid identifier names. Thus it can obscure from the
compiler or verifier which field will be accessed. Code review
suggests that this occurs when (a) objects are in fact hash maps, (b)
libraries, such as Prototype, construct “classes” based on dynamic
descriptions, (c) when the code needs to update an unknown field.
Traces do not indicate any consistency in the behavior and use
of hashmap notation. Figure 12 shows, for all objects which are
ever accessed with hashmap notation, for traces using the Prototype
library (above) and jQuery (below), which style of access is used
over time (Direct access is x.f and Hashmap access is x["f"]). If
there was a clear separation between hashmaps and normal objects
one would expect to see only hashmap accesses in the figure.
Instead, the fact that the majority of object accesses are still direct
accesses suggests that objects are accessed with a mixture of direct
and hash notation. The Prototype library uses hashmap notation to
build class-like prototypes from abstract descriptions. As expected,
sites using this library (e.g., ISHK) have far more hashmap activity
during construction than post-construction (the dashed line in the
graph indicates the end of the object’s initialization). Other sites,
however, are less consistent.

6.4 Object Protocol Dynamism
It is often asserted that although properties can be added to objects
at any point, they are generally added only during initial construc-
tion, and are later only read and updated. The measure of the num-
ber of fields/methods that are added or deleted after initialization is
thus likely to be a good metric of the dynamism of JavaScript pro-
grams. For so-called instance objects, i.e. objects that are created by
invoking a constructor function, there is a clear sense of what ob-
ject initialization means: it is the time spent in the constructor. For
anonymous objects, things are much less clear. Figure 13 shows the
accesses performed on constructed objects over the lifespan of the
object for two sites: a site showing the expected and desired behav-
ior (TWIT), and a poorly-behaved site (GOGL). Time is measured
in events that have the object as a target for a read, add, delete and
update operation. Object lifespans are normalized to construction

0.0

0.2

0.4

0.6

0.8

1.0

Accesses using Hashmap syntax
Accesses using Direct syntax

0.0

0.2

0.4

0.6

0.8

1.0

Accesses using Hashmap syntax
Accesses using Direct syntax

Figure 12. Hashmap access. How objects accessed at least once
via hashmap syntax are accessed over time. Above, the average of
all sites using the Prototype library, and below, the average of all
sites using the jQuery library. The dashed line represents the end of
object construction.

time, such that the vertical line in the graph separates the construc-
tor from post-constructor accesses. Although it is clear that field
additions are far more common during the constructor, most sites
add fields to objects well into their lifespan. Furthermore, many ob-
jects have a “hump” of field adds immediately after the constructor
ends, suggesting that a heuristic to determine when an object is
fully constructed, and for that matter when its type is well-defined,
would be quite difficult to find. This hump is created by factory
methods, inheritance emulation and other patterns which consis-
tently add fields to an object immediately after it is instantiated.
Field deletions are uncommon, but occur in FBOK, GMIL, GOGL
and YTUB. Another view of the same information is provided in
Figure 14. Although most sites have far greater protocol-changing
accesses (field additions and deletions) during construction time,
post-construction protocol changes are as many as 10% of accesses

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Figure 13. Object timelines. Above, TWIT. Below, GOGL. The
dashed line indicates the end of object construction.

28
0S

BI
NG

BL
O

G
DI

G
G

EB
AY

FB
O

K
FL

KR
G

M
AP

G
M

IL
G

O
G

L
IS

HK
LI

VE
M

EC
M

TW
IT

W
IK

I
W

O
RD

YT
UB

0.0

0.2

0.4

0.6

0.8

1.0

During Construction
After Construction

28
0S

BI
NG

BL
O

G
DI

G
G

EB
AY

FB
O

K
FL

KR
G

M
AP

G
M

IL
G

O
G

L
IS

HK
LI

VE
M

EC
M

TW
IT

W
IK

I
W

O
RD

YT
UB

0.0

0.2

0.4

0.6

0.8

1.0

During Construction
After Construction

Figure 14. Object protocol changes. Average ratio of object pro-
tocol changes (field additions and deletions) to all activity, both
during and after construction.

on some sites. This is in spite of the fact that Figure 14 extends
our heuristic for the termination of initialization to after the post-
construction hump mentioned above.

6.5 Constructor Polymorphism
JavaScript’s mechanism for constructing objects is more dynamic
than that of class-based languages because a constructor is simply
a function that initializes fields programmatically. Contrast the fol-
lowing constructor function to the declarative style imposed by a
class-based language:

function C(b) { if(b) this.y = 0; else this.x = 0; }

The objects returned by new C(true) and new C(false) will have
different (in this case, disjoint) sets of properties. If one can envi-
sion as the set of properties returned by a constructor as a “type”,
then it is natural to wonder how many constructors return different
types at different times during the execution of a program. Fig-
ure 15 gives an overview of the polymorphism of constructors over
all traces. The majority of constructors always return the same set
of properties. But, 573 constructors return two different sets of
properties, and one outlier that returns 246 different “types” was
observed in GMIL.

This polymorphism can arise for a number of reasons, but a
common one is that the dynamism of JavaScript allows libraries to
abstract away the details of implementing object hierarchies. Of-
ten, these abstractions end up causing all object construction to use
a single static constructor function, which is called in different con-
texts to create different objects, such as the following constructor
function from the Prototype library.

function klass() {
this.initialize.apply(this, arguments);

}

All user objects inherit this constructor, but have distinct initialize
methods. As a result, this constructor is polymorphic in the objects
it creates.

1 2 5 10 20 50 100 200

1
10

10
0

10
00

10
00

0

Figure 15. Constructor polymorphism. Plots the number of dis-
tinct sets of properties (x-axis) against the number of constructor
functions observed to create objects with that many distinct sets of
properties (y-axis). (Log scale)

6.6 Constructor Prototype Modification
The prototype field of a constructor defines which properties an
object created by this constructor will inherit. However, the value
of the prototype field can be changed, which means that two ob-
jects created by the same constructor function may have different
prototypes, and so different APIs. Changing the prototype field is
generally done before any objects are created from that prototype,
and is often done by helper functions such as the following from
the Prototype library to mimic subclassing.

function subclass() {};
...

if (parent) {
subclass.prototype = parent.prototype;
klass.prototype = new subclass;
parent.subclasses.push(klass);

}

We did not record the number of occurrences this pattern at run-
time, but clearly the possibility that the above code will be executed
can not be discounted.

6.7 Changes to the Prototype Chain
An object’s protocol can change over time by adding or deleting
fields from any of its prototypes. Although we found this behavior
to be uncommon for user-created types, it is very common for li-
braries to extend the builtin types of JavaScript, in particular Object
and Array. For instance, the Prototype library includes a num-
ber of collection-like classes, but also extends String.prototype
and Array.prototype such that they can be used as collections, by
adding e.g. the toArray, truncate and strip methods to them, as
well as extending Array to include all of the definitions from Pro-
totype’s Enumerable type:

Object.extend(Array.prototype, Enumerable);

Some code uses this ability to change prototypes as a form of
modularity. Since prototypes can be modified at any time, features
can be implemented in separate parts of the code even if they affect
the same type. Again, we do not report runtime occurrences, but
observe that this is something that must be accounted for by tools
and static type disciplines.

6.8 Object Lifetimes
As in many languages, most objects in JavaScript are generally very
short-lived. Figure 16 shows the percentiles of object lifetimes seen
across all traces, in terms of events performed on those objects (we
do not record wall clock time in traces). 25% of all objects are
never used, and even the 90th percentile of objects are alive for only
7 events. This does not include any integers or strings which the
runtime never boxes into an object (which is to say, numbers and
strings that never have fields accessed). The conclusion is clearly
that much of data is manipulated very infrequently and thus suggest
that lazy initialization may be a winning optimization.

Percentile
25 50 75 85 90 95 97 98 99 100

Events 0 1 3 6 9 14 25 37 74 1,074,322

Figure 16. Object lifetimes. The longevity of objects in terms of
the number of events performed on them.

6.9 The Effects of JavaScript Libraries
Many contemporary sites utilize JavaScript libraries; in our corpus,
44 sites used a publicly-available library, and 7 sites used more
than one library simultaneously. The most popular were jQuery and

Prototype, appearing on 21 and 9 sites, respectively. Such libraries
provide simplified and well-tested coding patterns for problems in-
cluding UI widgets, animation, DOM manipulation, serialization,
asynchronous page loading, and class-based workarounds built on
top of JavaScript’s prototype-based system. In general, the presence
of a particular library does not imply a major change in the pro-
gram’s dynamic behavior. This is in part due to the large feature sets
of most libraries. Prototype offers all of the functionality mentioned
above (besides UI widgets and animation), and jQuery similarly of-
fers all of the above (except an implementation of “classes”). Be-
cause there are many use cases for each library, there are few char-
acteristic runtime behaviors exhibited. Exceptions to this tend to be
artifacts of implementation techniques specific to a library (such as
Prototype’s dynamic construction of prototype objects, or the dis-
proportionate allocation of Date objects by animation libraries).

7. Measuring the Behavior of Benchmarks
There are several popular benchmark suites used to determine the
quality and speed of JavaScript implementations. However, using
these benchmarks as metrics assumes that they are representative
of JavaScript programs at large. We looked at three suites in partic-
ular to determine their relevance: SunSpider: (SUNS) A wide range
of compute-intensive benchmarks. Includes deserialization, a ray-
tracer, and many other primarily mathematical tasks. V8: (V8BM)
The benchmarks associated with Google’s Chrome browser. Again
they include computationally-intensive benchmarks., such as cryp-
tography and another raytracer. Dromaeo: (DROM) Unlike the other
suites, these benchmarks are intended to test the browser’s DOM,
as opposed to the JavaScript engine itself. In several ways, these
benchmarks have proven to be inconsistent with the real-world
JavaScript code we tested. We discuss our main observations:

7.1 Object Kinds
Benchmarks tend to heavily stress a few types of objects, which
have little similarity to the object types used by real-world sites.
Figure 17 shows the benchmarks’ disproportionate number of in-
stances and arrays. Comparing the benchmarks to the All Sites
bar, one can clearly observe that constructed objects (instances) are
overrepresented in V8BM and SUNS, whereas DROM is almost ex-
clusively preoccupied with arrays.

The extensive use of constructed objects in benchmarks is no-
table. In SUNS, 39% of objects are instances, and in V8BM, 63%
are. In the real-world sites, only GMAP and LIVE produced more
than 10% instance objects (with GMAP and LIVE producing 35%
and 24%, respectively). It seems likely therefore that a JavaScript
implementation that favored other object types would be poorly
represented by SUNS and V8BM.

7.2 Uses of eval
While SUNS has benchmarks which use eval, performing 2785
evals in our trace with only 33 deserializing JSON data, V8BM
performs no evals. DROM performed 32 evals, with only 1 deseri-
alizing JSON data. This suggests that SUNS is more representative

DROM

SUNS

V8BM

All Sites

anonymous
dom

arrays
dates

regexps
functions

instances
errors

prototypes

Figure 17. Kinds of allocated objects.

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Figure 18. Object timelines. SUNS (above) and V8BM (below).
The dashed line indicates the end of object construction.

of real-world workloads, the others less so. The latter is not surpris-
ing given the nature of the benchmarks (there is a lot of mathemat-
ical computation which is not typical of most JavaScript programs
in the wild).

7.3 Object Protocol Dynamism
Although many sites have relatively sane and stable use of ob-
jects, with object initialization occurring mostly during construc-
tion, several do not. Figure 18 shows the object timelines of SUNS
and V8BM. The behavior of most sites at construction time is mod-
eled by SUNS, with a post-construction hump as seen in several
real-world sites. However, the lifetime of objects in SUNS is atyp-
ical, with most objects fairly long-lived. V8BM’s object dynamism
is completely dissimilar to any real-world site, to the benefit of
Google’s V8 JavaScript engine. The lifetimes of objects in V8BM
is similar to object lifetimes of real-world JavaScript, with the ex-
ception that objects have fairly constant lifetimes, as shown by the
steep dropoffs in living objects in Figure 18. This peculiarity was
not seen in any real-world sites. DROM uses no constructed ob-
jects, as its intention is primarily to test the implementation of the
DOM API, and is thus not very useful as general purpose JavaScript
benchmark.

7.4 Function Variadicity and Polymorphism
Variadicity in the benchmarks was not dissimilar to real-world pro-
grams. DROM and SUNS each had about 5% of functions used vari-
adically (close to the 6% seen accross all sites), and V8BM had
about 2% variadic. Polymorphism was rarer in the benchmarks,
with 3%, 2% and 1% of call sites being polymorphic in DROM,
SUNS and V8BM (respectively). As 19% of call sites were polymor-
phic across all sites, implementations which do not handle poly-
morphic call sites well will perform better with benchmarks than
real-world JavaScript.

8. Conclusion
This paper has provided the first large-scale study of the runtime
behavior of JavaScript programs. We have identified a set of rep-
resentative real-world programs ranging in size from hundreds of
kilobytes to megabytes, using an instrumented interpreter we have
recorded multiple traces per site, and then with an offline analysis
tool we have extracted behavioral information from the traces. We
use this information to evaluate a list of nine commonly made as-
sumptions about JavaScript programs. Each assumption has been
addressed, and most are in fact false for at least some real-world
code. To summarize, we found that:

1. The prototype hierarchy is invariant. Libraries often change
JavaScript’s builtin prototypes in order to add behavior to types
which would be fixed in a less-flexible language, such as Object
and Array. Although changes to user-created types are more
rare, they do occur as a means of modularity.

2. Properties are added at object initialization. This assertion is
only true for a subset of sites, with particularly poorly-behaved
sites adding and deleting fields late in the lifespan of very
long-lived objects. This presents a challenge to any attempt
at imposing a type upon objects at runtime, as even the very
simple notion of type being a list of fields is subject to changes
over objects’ lifespans.

3. Properties are rarely deleted. Deletions were found to be in
fact quite common on some sites. Most JavaScript programs do
not, however, use field deletion at all.

4. The use of eval is infrequent and does not affect semantics.
Our data shows that evals are not infrequent, and on most sites
they have arbitrary and unpredictable behavior. The secondary
assumption, that eval is used primarily for deserialization, also
turns out to be false for most sites. Furthermore, nearly every
site that uses JavaScript also uses eval.

5. Declared function signatures are indicative of types. In most
languages, variadic functions are rare. Our data indicates that
nearly 10% of functions are variadic in JavaScript.

6. Program size is modest. When analyzing the amount of code
the interpreter must parse and run, many sites are (with re-
peated code) running megabytes of code. Even ignoring identi-
cal reloaded code, most sites load hundreds of kilobytes. Full-
program analysis is likely infeasible with this amount of code,
even if it was all known statically (i.e. not created by eval)

7. Call-site dynamism is low. Across all traces only 81% of call-
sites are monomorphic. Even if determining which sites are
monomorphic statically was achievable, the number of poly-
morphic call sites and degree of polymorphism is high enough
that they would provide a significant hurdle to statically analyz-
ing code paths.

8. Execution time is dominated by hot loops. This assumption
is in fact true, but less so than in Java. Our data shows that 10%
of the functions ever called are hot, and only 50% of functions
are ever called.

Figure 19 gives a subjective opinion on which sites violated
which of these assumptions. Although the opinion on whether
the assumption is violated is subjective, they rely on the same
underlying data as the rest of this paper.

8 Only egregious violators are noted here, as only one site had no arbitrary
evals at all
8 These are sites for which the 90-10 rule (that 90% of execution time is
spent in 10% of functions) does not hold

1 2 3 49 5 6 7 810

280S X
BING X X
BLOG X X X
DIGG X X X X X
EBAY X X X
FBOK X X X X X X
FLKR X X X
GMAP X X X X
GMIL X X X X X
GOGL X X X X X X X
ISHK X X X
LIVE X X X X X
MECM X X X X X
TWIT X X X
WIKI X X
WORD X X X X
YTUB X X X X X

Figure 19. Violations. For each assumption (above), a subjective
opinion of which sites (left) violate that assumption.

Given how thoroughly these common assumptions are violated,
it seems that JavaScript is indeed a harsh terrain for static analysis.
However, no sites violate all of the assumptions, so optimizations
based on them could work in many cases. Optimizations requiring
whole-program analysis are unlikely to be successful, as many sites
use a large amount of JavaScript, and eval is frequent and unpre-
dictable. Rigidly static type systems are unlikely to be usable with
JavaScript; any applicable type system must be open to the very
real possibility of object protocol changes. Any typing framework
which depends on the typing of function parameters will struggle
with JavaScript’s high degree of variadicity.

Acknowledgments
The authors thank Tobias Wrigstad and Johan Östlund for their
enthusiasm and work on the early stages of this project; as well as
the anonymous reviewers and Manuel Serrano for their comments.
This work is supported in part by NSF grants CCF 0938232 and
CNS 0716659 as well as ONR award N000140910754.

References
[1] Christopher Anderson. Type Inference for JavaScript. PhD thesis,

Department of Computing, Imperial College London, March 2006.

[2] Christopher Anderson and Sophia Drossopoulou. BabyJ: From object
based to class based programming via types. Electr. Notes Theor.
Comput. Sci., 82(7), 2003.

[3] Christopher Anderson and Paola Giannini. Type checking for
JavaScript. Electr. Notes Theor. Comput. Sci., 138(2), 2005.

[4] Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying
behavioral differences between c and c++ programs. Journal of
Programming Languages, (4), 1994.

[5] C. Chambers, D. Ungar, and E. Lee. An efficient implementation
of SELF a dynamically-typed object-oriented language based on
prototypes. SIGPLAN Not., 24(10):49–70, 1989.

[6] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for JavaScript. In Programming Language Design
and Implementation, (PLDI), 2009.

[7] Bruno Dufour, Karel Driesen, Laurie J. Hendren, and Clark Ver-
brugge. Dynamic metrics for java. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA), 2003.

[8] Ben Feinstein and Daniel Peck. Caffeinemonkey: Automated
collection, detection and analysis of malicious JavaScript. In Black
Hat USA 2007, Las Vegas, NV, USA, 2007.

[9] Michael Furr, Jong hoon An, Jeffrey Foster, and Michael Hicks. Static
type inference for ruby. In Symposium on Applied Computing (SAC),
2009.

[10] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith,
Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael
Franz. Trace-based just-in-time type specialization for dynamic
languages. In Conference on Programming Language Design and
Implementation (PLDI), 2009.

[11] C.D. Garret, J. Dean, D. Grove, and C. Chambers. Measurement
and application of dynamic receiver class distributions. Univ of
Washington, 1994.

[12] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static
analysis for ajax intrusion detection. In International Conference on
World Wide Web (WWW), 2009.

[13] Phillip Heidegger and Peter Thiemann. Recency types for
dynamically-typed, object-based languages. In Foundations of
Object Oriented Languages (FOOL), 2009.

[14] Alex Holkner and James Harland. Evaluating the dynamic behaviour
of Python applications. In Australasian Computer Science Conference
(ACSC), 2009.

[15] Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari,
and Tommi Mikkonen. The lively kernel a self-supporting system on
a web page. In Self-Sustaining Systems, 2008.

[16] ECMA International. ECMA-262: ECMAScript Language Specifica-
tion. ECMA (European Association for Standardizing Information
and Communication Systems), Geneva, Switzerland, third edition,
December 1999.

[17] Dongseok Jang and Kwang-Moo Choe. Points-to analysis for
JavaScript. In Symposium on Applied Computing (SAC), 2009.

[18] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type
analysis for JavaScript. In Static Analysis Symposium (SAS), 2009.

[19] Sylvain Lebresne, Gregor Richards, Johan Östlund, Tobias Wrigstad,
and Jan Vitek. Understanding the dynamics of JavaScript. In
Workshop on Script to Program Evolution (STOP), 2009.

[20] F. Loitsch and M. Serrano. Hop client-side compilation. In
Symposium on Trends on Functional Languages, 2007.

[21] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Isolating JavaScript
with filters, rewriting, and wrappers. In European Symposium on
Research in Computer Security (ESORICS), 2009.

[22] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn.
JSMeter: Comparing the behavior of JavaScript benchmarks with
real web applications. In USENIX Conference on Web Application
Development (WebApps), June 2010.

[23] Ewan D. Tempero, James Noble, and Hayden Melton. How do java
programs use inheritance? an empirical study of inheritance in java
software. In European Conference on Object-Oriented Programming
(ECOOP), 2008.

[24] Peter Thiemann. Towards a type system for analyzing JavaScript
programs. In European Symposium on Programming (ESOP), 2005.

[25] Sam Tobin-Hochstadt and Matthias Felleisen. The design and
implementation of Typed Scheme. In POPL, pages 395–406, New
York, NY, USA, 2008. ACM.

[26] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda,
Christopher Krügel, and Giovanni Vigna. Cross site scripting
prevention with dynamic data tainting and static analysis. In Network
and Distributed System Security Symposium (NDSS), 2007.

[27] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov.
JavaScript instrumentation for browser security. In Symposium on
Principles of Programming Languages (POPL), 2007.

[28] Chuan Yue and Haining Wang. Characterizing insecure JavaScript
practices on the web. In 18th International World Wide Web
Conference, pages 961–961, April 2009.

