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Abstract
High-performance computing applications, such as auto-tuners and
domain-specific languages, rely on generative programming tech-
niques to achieve high performance and portability. However, these
systems are often implemented in multiple disparate languages and
perform code generation in a separate process from program execu-
tion, making certain optimizations difficult to engineer. We lever-
age a popular scripting language, Lua, to stage the execution of
a novel low-level language, Terra. Users can implement optimiza-
tions in the high-level language, and use built-in constructs to gen-
erate and execute high-performance Terra code. To simplify meta-
programming, Lua and Terra share the same lexical environment,
but, to ensure performance, Terra code can execute independently
of Lua’s runtime. We evaluate our design by re-implementing exist-
ing multi-language systems entirely in Terra. Our Terra-based auto-
tuner for BLAS routines performs within 20% of ATLAS, and our
DSL for stencil computations runs 2.3x faster than hand-written C.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Code Genration, Compilers

General Terms Design, Performance

Keywords Lua, Staged computation, DSL

1. Introduction
There is an increasing demand for high-performance power-efficient
applications on devices ranging from phones to supercomput-
ers. Programming these applications is challenging. For optimum
performance, applications need to be tailored to the features of
the target architecture, e.g., multi-core, vector instructions, and
throughput-oriented processors such as GPUs. Applications have
turned to generative programming to adapt to complex hardware.
Auto-tuners like SPIRAL [22], ATLAS [32], or FFTW [11] can
express a range of implementations for specific applications such
as FFTs, and choose the best optimizations for a given architecture.
In areas such as machine learning [4], or physical simulation [9],
domain-specific languages (DSLs) can achieve the same goal for
a range of similar applications through domain-specific optimiza-
tions.
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However, high-performance applications that rely on code gen-
eration are often implemented as ad hoc source-to-source transla-
tors. Consider for instance, FFTW which implements its genfft
compiler in OCaml and emits C code [11], or Liszt, a DSL which
uses Scala for its transformations and generates code that links
against a runtime written in C [9].

While these designs produce high-performance code, they are
hard to engineer. A DSL or auto-tuner typically has three compo-
nents: an optimizer that performs domain-specific transformations
to generate a plan of execution, a compiler that generates high-
performance code based on the plan, and a runtime that supports
the generated code and provides feedback to the optimizer. If, as
in FFTW and Liszt, the optimizer and compiler are separate from
the runtime, it is difficult to feed runtime statistics back to the com-
piler to perform problem-specific optimizations. Transformations
also require careful engineering to separate compile-time and run-
time optimizations, making it difficult to prototype new optimiza-
tions.

Ideally, it should be easy for domain experts to experiment
with domain and problem-specific transformations, generate high-
performance code dynamically, and provide runtime feedback to
improve performance. Furthermore, all parts of the toolchain, com-
piler, generated code, and runtimes, should inter-operate amongst
themselves and with legacy high-performance libraries. Achieving
these goals in a single system is complicated by the fact that each
component has different design constraints. It is easier to prototype
compiler transformations in an expressive high-level language, but
achieving high performance in the generated code and runtime re-
quires fine-grained control over execution and memory resources,
which is easier in a low-level language.

To address these problems, we use multi-stage programming [29]
to couple an existing high-level language, Lua, with a new low-
level language, Terra. Lua is a high-level dynamically-typed lan-
guage with automatic memory management and first-class func-
tions [13]. Terra, on the other hand, is a statically-typed language
similar to C with manual memory management. Terra code is em-
bedded in Lua. Using multi-stage programming, programmers can
generate and execute Terra code dynamically from Lua.

This design allows domain experts to experiment with high-
level transformations using Lua, while still generating high-performance
code using Terra. To simplify code generation, the evaluation of
Lua and the generation of Terra code share the same lexical envi-
ronment and variable references are hygienic across the two lan-
guages. To ensure fine-grained control of execution, Terra executes
in a separate environment: Terra code runs independently of the
Lua runtime. It can run in a different thread, or (in the future) on
accelerators like GPUs. This separation ensures that the high-level
features of Lua do not creap into the execution of Terra. Further-
more, Terra exposes the low-level features of modern hardware
such as vector instructions. Finally, we leverage the fact that Lua



was specifically designed to be embedded in low-level languages
such as C [14]. Lua’s stack-based C-API makes it easy to interface
with legacy code, while a built-in foreign-function interface [1]
makes it possible to pass values between Lua and Terra.

Since Terra exists only as a staged program in Lua, it can omit
features such as conditional compilation and namespaces. Further-
more, support for type reflection on Terra types enables the cre-
ation of new types via meta-programming. This design keeps Terra
simple while still allowing the creation of higher-level components
such as class systems used to implement high-performance run-
times.

This paper makes the following contributions:

• We present the design of Terra which uniquely combines the
staging of a low-level language using a high-level one, shared
lexical scoping, separate evaluation, and type reflection.

• We provide a formal semantics of core Terra to elucidate the
interaction between Terra and Lua, focusing on how staging
operates in the presence of side effects in Lua.

• We show that we can reimplement a number of existing multi-
language systems entirely in Terra, but still achieve similar per-
formance. In particular, we show an auto-tuner for matrix mul-
tiply that performs within 20% of ATLAS, but uses fewer than
200 lines of Terra code, and we present a stencil computation
language that performs 2.3x faster than hand-written C. Finally,
we implement a class system and container with parameteriz-
able data layout as JIT-compilable Terra libraries, which would
be difficult to engineer in existing languages.

2. Writing Multi-stage Code in Terra
We use an example image processing algorithm to introduce Terra.
At the top-level, a program executes as Lua, augmented with con-
structs to create Terra functions, types, variables, and expressions.
The terra keyword introduces a new Terra function (Lua functions
are introduced with function):

terra min(a: int, b: int) : int
if a < b then return a
else return b end

end

Terra functions are lexically-scoped and statically-typed, with pa-
rameters and return types explicitly annotated. In contrast, Lua has
no type annotations. Terra is also backwards-compatible with C:

std = terralib.includec("stdlib.h")

The Lua function includec imports the C functions from stdlib.h.
It creates a Lua table, an associative map. In Lua, the expression
table.key is syntax sugar for table["key"]. It then fills the table
with Terra functions that invoke the corresponding C functions
found in stdlib.h. For example, std.malloc is C’s malloc.

Terra entities (functions, types, variables and expressions) are
first-class Lua values. For example, the follow statement constructs
a Terra type that holds a square greyscale image:

struct GreyscaleImage { data : &float, N : int }

GreyscaleImage is a Lua variable whose value is a Terra type.
Terra’s types are similar to C’s. They include standard base types,
arrays, pointers, and nominatively-typed structs. Here data is a
pointer to floats, while GreyscaleImage is a type that was created
by the struct constructor.

We might want to parameterize the image type based on the type
stored at each pixel (e.g., an RGB triplet, or a greyscale value). We
can define a Lua function Image that creates the desired Terra type
at runtime. This is conceptually similar to a C++ template:

function Image(PixelType)
struct ImageImpl {

data : &PixelType,
N : int

5 }
-- <<method definitions>>
return ImageImpl

end

Each struct can have a set of methods:
-- <<method definitions>> ::=
terra ImageImpl:init(N: int): {} --returns nothing

self.data =
std.malloc(N*N*sizeof(PixelType)):as(&PixelType)

5 self.N = N
end
terra ImageImpl:get(x: int, y: int) : PixelType

return self.data[x*self.N + y]
end

10 --omitted methods for: set, save, load, free

Methods are normal Terra functions stored in a Lua table associated
with each type (e.g., ImageImpl.methods). The method declaration
syntax is sugar for:

ImageImpl.methods.init =
terra(self : &ImageImpl, N : int) : {}

...
end

Method invocations (myimage:init(128)) are also just syntactic
sugar (ImageImpl.methods.init(myimage,128)). In the init func-
tion, we call std.malloc to allocate memory for our image. Since
std is a Lua table, Terra will evaluate the table select operator
(std.malloc) during compilation and resolve it to the malloc func-
tion. We also define a get function to retrieve each pixel, as well as
some utility functions which we omit for brevity.

Outside of the Image function, we call Image(float) to define
GreyscaleImage. We use it to define a laplace function and a driver
function runlaplace that will run it on an image loaded from disk:
GreyscaleImage = Image(float)
terra laplace(img: &GreyscaleImage,

out: &GreyscaleImage) : {}
--shrink result, do not calculate boundaries

5 var newN = img.N - 2
out:init(newN)
for i = 0,newN do

for j = 0,newN do
var v = img:get(i+0,j+1) + img:get(i+2,j+1)

10 + img:get(i+1,j+2) + img:get(i+1,j+0)
- 4 * img:get(i+1,j+1)

out:set(i,j,v)
end

end
15 end

terra runlaplace(input: rawstring,
output: rawstring) : {}

var i = GreyscaleImage {}
var o = GreyscaleImage {}

20 i:load(input)
laplace(&i,&o)
o:save(output)
i:free(); o:free()

end

To actually execute this Terra function, we can call it from Lua:
runlaplace("myinput.bmp","myoutput.bmp")

Invoking the function from Lua will cause the runlaplace function
to be JIT compiled. A foreign function interface converts the Lua
string type into a raw character array rawstring used in Terra code.
Alternatively, we can save the Terra function to a .o file which can
be linked to a normal C executable:

terralib.saveobj("runlaplace.o",
{runlaplace = runlaplace})



We may want to optimize the laplace function by blocking the
loop-nests to make the memory accesses more friendly to cache.
We could write this optimization manually, but the sizes and num-
bers of levels of cache can vary across machines, so maintaining a
multi-level blocked loop can be tedious. Instead, we can create a
Lua function, blockedloop, to generate the loop-nests for an arbi-
trary number of block sizes. In laplace, we can replace the loop-
nests (lines 7–12) with a call to blockedloop that generates a 2-level
blocking scheme with outer blocks of size 128 and inner blocks of
size 64:

[blockedloop(newN,{128,64,1}, function(i,j)
return quote

var v = img:get(i+0,j+1) + img:get(i+2,j+1)
+ img:get(i+1,j+2) + img:get(i+1,j+0)

5 - 4 * img:get(i+1,j+1)
out:set(i,j,v)

end
end)]

The brackets ([]) around the expression are the Terra equivalent
of the escape operator from multi-stage programming, allowing a
value evaluated in Lua (the result of blockedloop) to be spliced
into the Terra quotation. The third argument to blockedloop is a
Lua function that is called to create the inner body of the loop. Its
arguments (i,j) are the loop indices. The quote expression creates
a quotation, a block of Terra code that can be spliced into another
Terra expression. Here, we use it to create the loop body using the
loop indices.

The implementation of blockedloop walks through the list of
blocksizes. It uses a quote to create a level of loop-nests for each
entry and recursively creates the next level using an escape. At the
inner-most level, it calls bodyfn to generate the loop body:

function blockedloop(N,blocksizes,bodyfn)
local function generatelevel(n,ii,jj,bb)

if n > #blocksizes then
return bodyfn(ii,jj)

5 end
local blocksize = blocksizes[n]
return quote

for i = ii,min(ii+bb,N),blocksize do
for j = jj,min(jj+bb,N),blocksize do

10 [ generatelevel(n+1,i,j,blocksize) ]
end

end
end

end
15 return generatelevel(1,0,0,N)

end

A more general version of this function is used to implement multi-
level blocking for our matrix multiply example.

This example highlights some important features of Terra. We
provide syntax sugar for common patterns in runtime code such as
namespaces (std.malloc) or method invocation (out:init(newN)).
Furthermore, during the generation of Terra functions, both Lua
and Terra share the same lexical environment. For example, the
loop nests refer to blocksize, a Lua number, while the Lua code
that calls generatelevel refers to i and j, Terra variables. Values
from Lua such as blocksize will be specialized in the staged code
as constants, while Terra variables that appear in Lua code such as i
will behave as variable references once placed in a Terra quotation.

3. Terra Core
To make the interaction between Lua and Terra precise, we formal-
ize the essence of both languages focusing on how Terra functions
are created, compiled, and called during the evaluation of a Lua
program and in the presence of side-effects. We will use this for-
malism in Section 4.1 to illustrate key design decisions in Terra.

The calculus, called Terra Core, is equipped with a big step op-
erational semantics that distinguishes between Lua expressions e,
Terra expressions .

e, and specialized Terra expressions .
e (in gen-

eral, we use a dot to distinguish Terra terms from Lua terms, and a
bar to indicate a Terra term is specialized). Evaluation starts in Lua
( L−→ ). When a Terra term is encountered it is specialized ( S−→ ),
a process analogous to macro expansion in LISP that evaluates any
escapes in the term to produce concrete Terra terms. Specialized
Terra functions can then be executed ( T−→ ). For simplicity we
model Lua as an imperative language with first-class functions and
Terra as a purely functional language. A namespace Γ maps vari-
ables (x) to addresses a, and a store S maps addresses to Lua val-
ues v. The namespace Γ serves as the value environment of Lua
(resolving variables to values, v), and the syntactic environment of
Terra specialization (resolving variables to specialized Terra terms.
e, which are a subset of Lua values).In contrast, Terra is executed
in a separate environment (

.
Γ).

The Lua (Core) syntax is given in the following table:

e ::= b |
.
T | x | let x = e in e | x := e | | e(e) |

fun(x){e} | tdecl | ter e(x : e) : e { .
e } | 8 .e

v ::= b | l |
.
T | 〈Γ, x, e〉 | .

e
.
T ::=

.
B |

.
T→

.
T

A Lua expression can be a base value (b), a Terra type name (
.
T),

a variable (x), a scoped variable definition (let x = e in e), an
assignment (x := e), a function call e(e), a function declaration
(fun(x){e}), or a quoted Terra expression (8 .e). We separate decla-
ration and definition of Terra functions to allow for recursive func-
tions. A Terra function declaration (tdecl) creates a new address
for a Terra function, while a Terra definition (ter e1(x : e2) :
e3 {

.
e }) fills in the declaration at address e1. For example, the

following declares and defines a Terra function, storing it in x:

let x = ter tdecl(x2 : int) : int { x2 } in x

Alternatively, tdecl creates just a declaration that can be defined
later:

let x = tdecl in ter x(x2 : int) : int { x2 }
In real Terra code, a Terra definition will create a declaration if
it does not already exist. Lua values range over base types (b),
addresses of Terra functions (l), Terra types (

.
T), Lua closures

(〈Γ, x, e〉) and specialized Terra expressions ( .e). The syntax of
Terra terms is defined as follows:

.
e ::= b | x | .

e(
.
e) | tlet x : e =

.
e in

.
e | [e]

A Terra expression is either a base type, a variable, a function
application, a let statement, or a Lua escape (written [e]). The
syntax of specialized terms is given next:

.
e ::= b | .

x | .
e(

.
e) | tlet .

x :
.
T =

.
e in

.
e | l

In contrast to an unspecialized term, a specialized Terra term does
not contain escape expressions, but can contain Terra function
addresses (l). The let statement must assign Terra types to the
bound variable; and variables are replaced with specialized Terra
variables .

x.
The judgment e Σ1

L−→ v Σ2 describes the evaluation of a
Lua expression. It operates over an environment Σ consisting of Γ,
S, and a Terra function store C which maps addresses (l) to Terra
functions in which Terra functions can be defined (〈 .x, .

T,
.
T,

.
e〉), or

undefined (•). Figure 1 defines the Lua evaluation rules. We use



v Σ
L−→ v Σ (LVAL)

Σ = Γ, S, C

x Σ
L−→ S(Γ(x)) Σ

(LVAR)

e1 Σ1
L−→ v1 Σ2 Σ2 = Γ, S, C e2 Σ2[x← v1]

L−→ v2 Σ3

let x = e1 in e2 Σ
L−→ v2 (Σ3 ← Γ)

(LLET)

e Σ
L−→ v Γ, S, C Γ(x) = a

x := e Σ
L−→ v Γ, S[a← v], C

(LASN)

Σ = Γ, S, C

fun(x){e} Σ
L−→ 〈Γ, x, e〉 Σ

(LFUN)

e1 Σ1
L−→ 〈Γ1, x, e3〉 Σ2 e2 Σ2

L−→ v1 Σ3

Σ3 = Γ2, S, C e3 (Σ3 ← Γ1)[x← v1]
L−→ v2 Σ4

e1(e2) Σ1
L−→ v2 (Σ4 ← Γ2)

(LAPP)

l fresh Σ = Γ, S, C

tdecl Σ
L−→ l Γ, S, C[l← •]

(LTDECL)

e1 Σ1
L−→ l Σ2 e2 Σ2

L−→
.
T1 Σ3 e3 Σ3

L−→
.
T2 Σ4

Σ4 = Γ1, S1, C1
.
x fresh

.
e Σ4[x← .

x]
S−→ .

e Γ2, S2, C2 C2(l) = •

ter e1(x : e2) : e3 {
.
e } Σ1

L−→ l Γ1, S2, C2[l← 〈.x, .T1,
.
T2,

.
e〉]

(LTDEFN)

.
e Σ1

S−→ .
e Σ2

8 .e Σ1
L−→ .

e Σ2

(LTQUOTE)

e1 Σ1
L−→ l Σ2 e2 Σ2

L−→ b1 Σ3

Σ3 = Γ, S, C C(l) = 〈.x, .T1,
.
T2,

.
e〉 b1 ∈

.
T1

[
.
x :

.
T1], [l :

.
T1 →

.
T2], C2 `

.
e :

.
T2

.
e [

.
x← b], C

T−→ b2

e1(e2) Σ1
L−→ b2 Σ3

(LTAPP)

Figure 1. The rules L−→ for evaluating Lua expressions.

two notational shortcuts:

Σ1[x← v] = Γ2, S2, C when Σ1 = Γ1, S1, C ∧ Γ2 = Γ1[x← a]∧
S2 = S1[a← v] ∧ a fresh

Σ← Γ1 = Γ1, S, C when Σ = Γ2, S, C

Rule LTDECL creates a new Terra function at address l and ini-
tializes it as undefined (•). Rule LTDEFN takes an undefined Terra
function (e1) and initializes it. First, e2 and e3 are evaluated as
Lua expressions to produce the type of the function,

.
T1 →

.
T2. The

body, .
e, is specialized. During specialization, Terra variables (x)

are renamed to new symbols ( .x) to ensure hygiene. Renaming has
been previously applied in staged-programming [29] and hygienic
macro expansion [2]. In the case of LTDEFN, we generate a fresh
name .

x for the formal parameter x, and place it in the environment.
Variable x will be bound in the scope of any Lua code evaluated
during specialization of the function. Uses of x in Terra code will
be replaced with .

x.
Rule LTAPP describes how to call a Terra function from Lua.

The actual parameter e2 is evaluated. The Terra function is then
typechecked. Semantically, typechecking occurs every time a func-
tion is run. In practice, we cache the result of typechecking. For

b Σ
S−→ b Σ (SBAS)

.
e1 Σ1

S−→ .
e1 Σ2

.
e2 Σ2

S−→ .
e2 Σ3

.
e1(

.
e2) Σ1

S−→ .
e1(

.
e2) Σ3

(SAPP)

e Σ1
L−→

.
T Σ2

.
e1 Σ2

S−→ .
e1 Σ3

.
x fresh

Σ3 = Γ, S, C
.
e2 Σ3[x← .

x]
S−→ .

e2 Σ4

tlet x : e =
.
e1 in

.
e2 Σ1

S−→ tlet
.
x :

.
T =

.
e1 in

.
e2 (Σ4 ← Γ)

(SLET)

e Σ1
L−→ .

e Σ2

[e] Σ1
S−→ .

e Σ2

(SESC)

[x] Σ1
S−→ .

e Σ2

x Σ1
S−→ .

e Σ2

(SVAR)

Figure 2. The rules S−→ for specializing Terra expressions.

b
.
Γ, C

T−→ b (TBAS) l
.
Γ, C

T−→ l (TFUN)

.
x

.
Γ, C

T−→
.
Γ(

.
x) (TVAR)

.
e1

.
Γ, C

T−→ v1
.
e2

.
Γ[

.
x← v1], C

T−→ v2

tlet
.
x :

.
T =

.
e1 in

.
e2

.
Γ, C

T−→ v2
(TLET)

.
e1

.
Γ, C

T−→ l
.
e2

.
Γ, C

T−→ v1

C(l) = 〈.x, .T1,
.
T2,

.
e3〉

.
e3

.
Γ[

.
x← v1], C

T−→ v2
.
e1(

.
e2)

.
Γ, C

T−→ v2
(TAPP)

Figure 3. The rules T−→ for evaluating Terra expressions.

Ĉ(l) =
.
T

Γ̂, Ĉ, C ` l :
.
T

(TYFUN1)

l 6∈ Ĉ C(l) = 〈x,
.
T1,

.
T2,

.
e〉 [x :

.
T1], Ĉ[l :

.
T1 →

.
T2], C ` .

e :
.
T2

Γ̂, Ĉ, C ` l :
.
T1 →

.
T2

(TYFUN2)
Figure 4. Typing rules for references to Terra functions.

simplicity, we only allow values b of base types to be passed and
returned from Terra functions.

Figure 2 defines judgment .
e Σ1

S−→ .
e Σ2 for specializ-

ing Terra code, which evaluates all embedded Lua expressions in
type annotations and escape expressions. Similar to LTDEFN, rule
SLET generates a globally unique name .

x to ensure hygiene. Rule
SESC evaluates escaped Lua code; it splices the result into the Terra
expression if the resulting value is in the subset of values that are
Terra terms .

e (e.g., a variable .
x or base value b). Variables in Terra

can refer to variables defined in Lua and in Terra; they behave as
if they are escaped, as defined by Rule SVAR. If x is a variable de-
fined inside Terra code and renamed .

x during specialization, then
rule SVAR will just produce .

x (assuming no interleaving mutation
of x).

Figure 3 presents the judgment .
e

.
Γ, C

T−→ v for evaluating
specialized Terra expressions. These expressions can be evaluated
independently from the Lua store S, and do not modify C, but are
otherwise straightforward. A Terra function is typechecked right
before it is run (LTAPP) with the judgment Γ̂, Ĉ, C ` .

e :
.
T,



where Γ̂ is the typing environment for variables and Ĉ is the
typing environment for Terra function references (C is the Terra
function store from before). The rules (omitted for brevity) are
standard, except for the handling of Terra function references l.
If a Terra function l1 refers to another Terra function l2, then l2
must be typechecked when typechecking l1. The rules for handling
these references in the presence of mutually recursive functions
are shown in Figure 4. They ensure all functions that are in the
connected component of a function are typechecked before it is
run.

4. Key Design Decisions
We want to make it easier to prototype domain- and problem-
specific transformations, dynamically compile the results of the
transformations into high-performance code, and support this code
with high-performance runtime libraries. The semantics of Terra
Core highlight some important design decisions in Terra that make
these goals possible. We then present engineering decisions that
also address these issues.

4.1 Language Design
Hygienic staged programming with a shared lexical environment.
In Terra Core, the evaluation of Lua code and the specialization of
Terra code share the same lexical environment Γ and store S. This
environment always maps variables x to Lua values v. However,
Terra syntax .

e is one type of Lua value. This example illustrates
the shared environment:

let x1 = 0 in
let x2 =8 (tlet y1 : int = 1 in x1) in
let x3 = ter tdecl(y2 : int) : int { x2 } in x3

The specialization of the quoted tlet expression occurs in the
surrounding Lua environment, so Rule SVAR will evalute x1 to 0.
This results in the specialized expression:

tlet
.
y
1

: int = 1 in 0
This Terra expression will be stored as a Lua value in x2. Since
the Terra function refers to x2, specialization will result in the
following Terra function:

〈 .y
2
, int, int, tlet

.
y
1

: int = 1 in 0〉
Furthermore, during specialization variables introduced by

Terra functions and Terra let expressions are bound in the shared
lexical environment. Consider this example:

let x1 = fun(x2){8tlet y : int = 0 in [x2]} in
let x3 = ter tdecl(y : int) : int { [x1(y)] } in x3
The variable y on line 3 is introduced by the Terra function

definition. It is referenced by the Lua expression inside the escape
([x1(y)]). The variable y is then passed as an argument to Lua
function x1, where it is spliced into a tlet expression.

When Terra variables are introduced into the environment, they
are given fresh names to ensure hygiene. For example, without
renaming, x3 would specialize to the following, causing the tlet
expression to unintentionally capture y:

〈y, int, int, tlet y : int = 1 in y〉
To avoid this, rules LTDEFN and SLET generate fresh names for
variables declared in Terra expressions. In this case, the LTDEFN
will generate a fresh name .

y
1

for the argument y binding it into the
shared environment (Σ[y← .

y
1
]), and SLET will similarly generate

the fresh name .
y
2

for the tlet expression. Since y on line 3 has the
value .

y
1

during specialization, the variable x2 will get the value .
y
1
,

and x3 will specialize to the following, avoiding the unintentional
capture:

〈 .y
1
, int, int, tlet

.
y
2

: int = 1 in
.
y
1
〉

The combination of staged programming, shared lexical envi-
ronment, and hygiene provides several benefits. The staged pro-
gramming of Terra from Lua provides interoperability between
compiler, generated code, and runtime of a DSL. DSL compilers
written in Lua can generate arbitrary code using a combination of
quotations, escapes, and terra definitions. The shared lexical en-
vironment makes it possible to organize Terra functions in the Lua
environment, and refer to them directly from Terra code without ex-
plicit escape expressions. To further reduce the need for escape ex-
pressions, we also treat lookups into nested Lua tables of the form
x.id1.id2...idn (where id1...idn are valid entries in nested Lua ta-
bles) as if they were escaped. This syntactic sugar allows Terra code
to refer to functions organized into Lua tables (e.g., std.malloc),
removing the need for an explicit namespace mechanism in Terra.
Finally, maintaining hygiene during staging ensures that it is al-
ways possible to determine the relationship between variables and
their declarations (across both Lua and Terra) using only the local
lexical scope.

Eager specialization with lazy typechecking Statically-typed
languages such as Terra are normally compiled ahead-of-time, re-
solving symbols, typechecking, and linking in a separate process
from execution. However, since Lua is a dynamically-typed and
can generate arbitrary Terra code, it is not possible to typecheck a
combined Lua-Terra program statically. Instead, the normal phases
of Terra compilation become part of the evaluation of the Lua pro-
gram, and we must decide when those phases run in relation to
the Lua program. To better understand how Terra code is compiled
in relation to Lua, consider where Terra can “go wrong”. While
specializing Terra code, we might encounter an undefined variable,
resolve a Lua value used in Terra to a Lua value this is not also
a Terra value, or resolve a Lua expression used as a Terra type to
a value that is not a Terra type. While typechecking Terra code,
we might encounter a type error. And, while linking Terra code,
we might find that a Terra function refers to a declared but unde-
fined function. In Terra (and reflected in Terra Core), we perform
specialization eagerly (as soon as a Terra function or quotation is
defined), while we perform typechecking and linking lazily (only
when a function is called, or is referred to by another function being
called).

Eager specialization prevents mutations in Lua code from
changing the meaning a Terra function between when it is com-
piled and when it is used. For instance, consider the following
example (we use the syntax e; e as sugar for let = e in e):

let x1 = 0 in
let y = ter tdecl(x2 : int) : int { x1 } in
x1 := 1;
y(0)

Since specialization is performed eagerly, the statement y(0)
will evaluate to 0. In contrast, if specialization were performed once
lazily, then it would capture the value of x1 the first time y is called
and keep that value for the rest of the program, which would lead to
surprising results (e.g., if y were used before x1 := 1 then it would
always return 0, otherwise it would always return 1). Alternatively,
we could re-specialize (and hence re-compile) the function when a
Lua value changes, but this behavior could lead to large compiler
overheads that would be difficult to track down.

Eager specialization requires all symbols used in a function to
be defined before it is used, which can be problematic for mutually
recursive functions. In order to support recursive functions with
eager specialization, we separate the declaration and definition of
Terra functions:



let x2 = tdecl in
let x1 = ter tdecl(y : int) : int { x2(y) } in
ter x2(y : int) : int { x1(y) };
x1(0)

Alternatively, we could have provided a form of Terra definition
that allows the definition of multiple mutually-recursive functions
at one time. However, this approach does not inter-operate well
with generative programs such as a DSL compiler that may need to
create an arbitrarily sized connected-component based on dynamic
information.

In contrast to specialization, typechecking is performed lazily.
In Terra Core, it would be possible to perform typechecking eagerly
if declarations also had types. For instance, in our previous example
we could typecheck x1 when it is defined if x2 was given a type
during declaration. However, even though x1 would typecheck, we
would still receive a linking error if x1(0) occurred before the
definition of x2. So performing typechecking eagerly would not
reduce the number of places an error might occur for function
x1. Furthermore, unlike specialization where the result can change
arbitrarily depending on the Lua state, the result of typechecking
and linking x can only change monotonically from a type-error to
success as the functions it depends on are defined (it can also stay
as a type-error if the function is actually ill-typed). Proof of this
property follows from the fact that Terra functions can be defined,
but not re-defined by Rule LTDEFN.

In the full Terra language, performing typechecking lazily also
provides several advantages. Declarations of functions do not have
to have type annotations making them easier to maintain, and user-
defined struct types do not need all their members or methods
specified before being used in a Terra function. In the default case,
we can keep type-checking monotonic by ensuring that members
and methods can only be added to user-defined types and not re-
moved. In actuality, the mechanisms for type-reflection described
later in this section allow user-defined libraries to override the de-
fault behavior of a type with the implied contract that the func-
tionality of user-defined types only grows over the execution of the
program.

Separate evaluation of Terra code. After Terra code is compiled,
it can run independently from Lua. This behavior is captured in
Terra Core by the fact that Terra expressions are evaluated inde-
pendently from the environment Γ and the store S, as illustrated by
this example:

let x1 = 1 in
let y = ter tdecl(x2 : int) : int { x1 } in
x1 := 2; y(0)

The Terra function will specialize to 〈.x, int, int, 1〉, so the function
call will evaluate to the value 1, despite x1 being re-assigned to
2. An alternative design would allow Terra evaluation to directly
refer to x1. For instance, in MetaOCaml [28], ref cells share the
same store across different stages, allowing mutations in staged
code to be seen outside of the staged code. This alternative makes
sharing state easier, but it would couple Terra and Lua’s runtime.
The required runtime support would make it difficult to port Terra
to new architectures such as GPUs, run code in multiple threads,
or link code into existing C programs without including the Lua
runtime.

Mechanisms for type reflection. Terra is a low-level monomor-
phic language. Its simplicity makes it easier to implement, but
can make programming libraries such as DSL runtimes tedious.
For instance, a DSL writer may want to experiment with different
data layouts such as array-of-structs or struct-of-arrays. Instead of
adding this functionality to Terra, we provide a type reflection API
for creating and examining Terra types, so this higher-level func-
tionality can be implemented as libraries. The basis of the API lies

in the fact that Terra types are Lua values, as illustrated in Terra
Core:

let x3 = fun(x1){ter tdecl(x2 : x1) : x1 { x2 }} in
x3(int)(1)

The Lua function x3 will generate a Terra identity function for
any given type. Here we call it with int, which will result in the
specialized Terra function 〈.x, int, int, .x〉.

In the full language we supplement this behavior with an API
to introspect and create type values in Lua. Terra types include
methods for introspection (e.g., t:ispointer(), or t:isstruct())
that can be called from Lua. Furthermore, structs can be created
programmatically. In addition to the methods table presented in
Section 2, structs also contain an entries table that describes their
in-memory layout, and a metamethods table that can override certain
compile-time behaviors. Here we layout complex number type
using its entries table directly:

struct Complex {}
Complex.entries:insert { field = "real", type = float }
Complex.entries:insert { field = "imag", type = float }

Additionally, we might want allow the promotion of a float to a
complex number. Terra also allows user-defined implicit conver-
sions by defining a Lua function __cast in the struct’s metamethod
table. During typechecking, when Terra needs to convert one type
to another and no default conversions apply, it will call the __cast
metamethod of either type to see if it could implement the conver-
sion. If both are successful, we favor the metamethod of the starting
type. The following example defines a conversion from a float to
a complex number, Complex:

Complex.metamethods.__cast = function(fromtype,totype,exp)
if fromtype == float then

--valid, construct a complex number from the float exp
return 8Complex { exp, 0.f }

5 end
error("invalid conversion")

end

If there is a valid conversion, the method returns a quotation that
implements the conversion (the back-tick is a shorthand for creating
single-expression quotations). Using a Lua function to determine
the behavior of conversions provides expressibility without the
need for a more complicated mechanism.

To organize functions related to a particular type, we also pro-
vide a method invocation syntax obj:my_method(arg) that is desug-
ared during typechecking to [T.methods.my_method] (obj,arg),
where T is the static type of obj. The combination of these fea-
tures allows many components such as polymorphic class systems
to be implemented as libraries (shown later in section 6.3).

4.2 Engineering Design
A high-level language for prototyping. Lua provides automatic
memory management, first-class functions, and built-in tables that
make it easy to manage structures like ASTs and graphs, which are
frequently used in DSL transformations. Its dynamic typing makes
it easier to prototype different data structures and to construct
arbitrary functions of Terra types and expressions.

A low-level language for performance. High-level programming
languages can make it difficult to control when and what optimiza-
tions will take place. Auto-tuners and DSLs already capture the
knowledge of how to generate high-performance code, so it is im-
portant to give them as much control as reasonable to express op-
timizations. We designed Terra to be a thin abstraction layer on
modern processors. Terra provides much the same functionality as
C including manual memory management, pointer arithmetic, and
monomorphic functions. Global state, though not present in Terra
Core, is possible in the full language using global variables created



with the global function. Additionally, Terra includes fixed-length
vectors of basic types (e.g., vector(float,4)) to reflect the presence
of SIMD units on modern processors. Since the design of Terra is
close to the hardware, users can more precisely express the execu-
tion behavior that they desire, and get predictable performance.

Cross-language interoperability using a foreign-function inter-
face. In Terra Core, Lua can only pass base values to Terra func-
tions and receive them as results. In the full language, when a Lua
environment is available, we use LuaJIT’s foreign function inter-
face(FFI) [1] to translate values between Lua and Terra both along
function call boundaries and during specialization. The similar-
ity of Terra’s type system to C’s enables us to adapt the FFI to
work with Terra. In addition to base types, it supports conversion
of higher-level objects. For instance, Lua tables can be converted
into structs when they contain the required fields. Lua functions
can also be converted into Terra functions by generating wrapper
code to dynamically convert the types on entry and exit. Since con-
versions are defined for Lua functions, calling a Lua function from
Terra code is just a special case of converting a Lua value into a
Terra value during specialization.

Backwards compatible with C. We believe that the lack of inter-
operability with existing code is a key factor limiting the adoption
of DSLs. Terra can call C functions, making it possible to use exist-
ing high-performance libraries in the implementation of runtimes,
and produce code that is binary compatible with C programs. Since
Lua is easily embedded in C programs, it is easy to incorporate
a mixed Lua-Terra program into existing C code. Since most lan-
guages have interfaces for calling C functions, this design makes it
possible to use Terra in existing systems.

5. Implementation
Terra expressions are an extension of the Lua language. We use
LuaJIT [1], an implementation of Lua that includes a trace-based
JIT compiler. Lua itself is implemented as a library in C, with calls
to initialize the runtime, load Lua programs, and evaluate them.
We add additional functions to this library to load combined Terra-
Lua programs. This process is implemented as a preprocessor that
parses the combined Terra-Lua text. This design allows us to imple-
ment Terra without having to modify the LuaJIT implementation.
The preprocessor parses the text, building an AST for each Terra
function. It then replaces the Terra function text with a call to spe-
cialize the Terra function in the local environment. This constructor
takes as arguments the parsed AST, as well as a Lua closure that
captures the local lexical environment. When this code is executed,
it will call into an internal library that actually constructs and re-
turns the specialized Terra function. The preprocessed code is then
passed to the Lua interpreter to load.

Terra code is compiled when a Terra function is typechecked the
first time it is run. We use LLVM [16] to compile Terra code since it
can JIT-compile its intermediate representation directly to machine
code. To implement backwards compatibility with C, we use Clang,
a C front-end that is part of LLVM. Clang is used to compile the
C code into LLVM and generate Terra function wrappers that will
invoke the C code when called.

6. Evaluation
To evaluate Terra, we use it to reimplement a number of multi-
language applications and compare our implementations with ex-
isting approaches. We present evidence that the design decisions of
Terra make the implementations simpler to engineer compared to
existing implementations while achieving high performance. First,
we evaluate an auto-tuner for BLAS and a DSL for stencil compu-
tations. Next, we show a high-performance class system and con-

tainer with programmable data layout that can be JIT compiled.
Each would be difficult to implement in a single existing language.

6.1 Tuning DGEMM
BLAS routines like double-precision matrix multiply (DGEMM)
are used in a wide range of applications and form a basis for many
of the algorithms used in high-performance scientific computing.
However, their performance is dependent on characteristics of the
machine such as cache sizes, vector length, or number of floating-
point machine registers. In our tests, a naı̈ve DGEMM can run over
65 times slower than the best-tuned algorithm.

The ATLAS project [32] was created to maintain high perfor-
mance BLAS routines via auto-tuning. To demonstrate Terra’s use-
fulness in auto-tuning high-performance code, we implemented a
version of matrix multiply, the building block of level-3 BLAS rou-
tines. We restrict ourselves to the case C = AB, with both A and B
stored non-transposed, and base our optimizations on those of AT-
LAS [32]. ATLAS breaks down a matrix multiply into smaller op-
erations where the matrices fit into L1 cache. An optimized kernel
for L1-sized multiplies is used for each operation. Tuning DGEMM
involves choosing good block sizes, and generating optimized code
for the L1-sized kernel. We found that a simple two-level block-
ing scheme worked well. To generate the L1-sized kernel, we use
staging to implement several optimizations. We implement register-
blocking of the inner-most loops, where a block of the output ma-
trix is stored in machine registers; we vectorize this inner-most loop
using vector types; and we use prefetch intrinsics to optimize non-
contiguous reads from memory.

The code that implements our L1-sized kernel is shown in
Figure 5. It is parameterized by the blocksize (NB), the amount of
the register blocking in 2 dimensions (RM and RN), the vector size (V),
and a constant (alpha) which parameterizes the multiply operation,
C = alpha*C + A*B. We generate the symbols needed for the code
on lines 4–9 (symmat generates a matrix of symbols). On lines 10–
20, we generate the code to load the values of C into registers
(loadc), and the code to store them back to memory (storec). Lines
21–31 load the A and B matrices, and lines 32–36 generate the
unrolled code to perform the outer product(calcc). We compose
these pieces into the L1-sized matrix multiply function (lines 37–
51). The full matrix-multiply routine (not shown) calls the L1-sized
kernel for each block of the multiply.

In Lua, we wrote an auto-tuner that searches over reasonable
values for the parameters (NB,V, RA, RB), JIT-compiles the code, runs
it on a user-provided test case, and choses the best-performing
configuration. In total, our implementation is around 200 lines of
Lua-Terra code.

We evaluate the performance by comparing to ATLAS and In-
tel’s MKL on a single core of an Intel Core i7-3720QM. ATLAS
3.10 was compiled with GCC 4.8. Figure 6 shows the results for
both double- and single- precision. For DGEMM, the naı̈ve algo-
rithm performs poorly. While blocking the algorithm does improve
its performance for large matrices, it runs at less than 7% of theo-
retical peak GFLOPs for this processor. In contrast, Terra performs
within 20% of the ATLAS routine, over 60% of peak GFLOPs of
the core, and over 65 times faster than the naı̈ve unblocked code.
The difference between Terra and ATLAS is likely caused by a reg-
ister spill in Terra’s generated code that is avoided in ATLAS’s gen-
erated assembly. Terra is also competitive with Intel’s MKL, which
is considered state-of-the-art. For SGEMM, Terra outperforms the
unmodified ATLAS code by a factor of 5 because ATLAS incurs
a transition penalty from mixing SSE and AVX instructions. Once
this performance bug is fixed, ATLAS performs similarly to Terra.

ATLAS is built using Makefiles, C, and assembly programs gen-
erated with a custom preprocessor. The Makefiles orchestrate the
creation and compilation of the code with different parameters.



function genkernel(NB, RM, RN, V,alpha)
local vector_type = vector(double,V)
local vector_pointer = &vector_type
local A,B,C = symbol("A"),symbol("B"),symbol("C")

5 local mm,nn = symbol("mn"),symbol("nn")
local lda,ldb,ldc = symbol("lda"),symbol("ldb"),symbol("ldc")
local a,b = symmat("a",RM), symmat("b",RN)
local c,caddr = symmat("c",RM,RN), symmat("caddr",RM,RN)
local k = symbol("k")

10 local loadc,storec = terralib.newlist(),terralib.newlist()
for m = 0, RM-1 do for n = 0, RN-1 do

loadc:insert(quote
var [caddr[m][n]] = C + m*ldc + n*V
var [c[m][n]] =

15 alpha * @vector_pointer([caddr[m][n]])
end)
storec:insert(quote

@vector_pointer([caddr[m][n]]) = [c[m][n]]
end)

20 end end
local calcc = terralib.newlist()
for n = 0, RN-1 do

calcc:insert(quote
var [b[n]] = @vector_pointer(&B[n*V])

25 end)
end
for m = 0, RM-1 do

calcc:insert(quote
var [a[m]] = vector_type(A[m*lda])

30 end)
end
for m = 0, RM-1 do for n = 0, RN-1 do

calcc:insert(quote
[c[m][n]] = [c[m][n]] + [a[m]] * [b[n]]

35 end)
end end
return terra([A] : &double, [B] : &double, [C] : &double,

[lda] : int64,[ldb] : int64,[ldc] : int64)
for [mm] = 0, NB, RM do

40 for [nn] = 0, NB, RN*V do
[loadc];
for [k] = 0, NB do

prefetch(B + 4*ldb,0,3,1);
[calcc];

45 B,A = B + ldb,A + 1
end
[storec];
A,B,C = A - NB,B - ldb*NB + RN*V,C + RN*V

end
50 A,B,C = A + lda*RM, B - NB, C + RM * ldb - NB

end end end

Figure 5. Parameterized Terra code that generates a matrix-
multiply kernel optimized to fit in L1.

Code generation is accomplished through a combination of pre-
processors and cross-compilation written in C. Auto-tuning is per-
formed using a C harness for timing. Different stages communicate
through the file system.

The design of Terra allows all of these tasks to be accomplished
in one system and as a single process. Terra provides low-level
features like vectors and prefetch instructions needed for high-
performance. In contrast, ATLAS needed to target x86 directly,
which resulted in a performance bug in SGEMM. Staging annota-
tions made it easy to write parameterized optimizations like register
unrolling without requiring a separate preprocessor. Interoperabil-
ity through the FFI made it possible to generate and evaluate the
kernels in the same framework. Finally, since Terra code can run
without Lua, the resulting multiply routine can be written out as a
library and used in other programs; or, for portable performance, it
can be shipped with the Lua runtime and auto-tuning can be per-
formed dynamically, something that is not possible with ATLAS.
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Figure 6. Performance of matrix multiply using different libraries
as a function of matrix size. Size reported is the total footprint for
both input and output matrices. All matrices are square.

void diffuse(int N, int b, float* x, float* x0, float* tmp,
float diff, float dt ){

int i, j, k; float a=dt*diff*N*N;
for (k = 0; k<= iter; k++){

5 for (j = 1; j <= N; j++)
for (i = 1; i <= N; i++)

tmp[IX(i,j)] = (x0[IX(i,j)] + a*(x[IX(i-1,j)]+
x[IX(i+1,j)]+x[IX(i,j-1)]+x[IX(i,j+1)]))/(1+4*a);

SWAP(x,tmp);
10 }

}

function diffuse ( x, x0, diff, dt )
local a=dt*diff*N*N
for k=0,iter do

x = (x0+a*(x(-1,0)+x(1,0)+x(0,-1)+x(0,1)))/(1+4*a)
5 end

return x,x0
end

Figure 7. A kernel from a real-time fluid solver written in C (top)
compared to Orion (bottom).

6.2 Orion: A Stencil DSL
To test Terra’s suitability for DSL development, we created a Orion,
a DSL for 2D stencil computations. Stencil computations are grid-
based kernels in which each value in the grid is dependent on a
small local neighborhood of values. They are used in image pro-
cessing and simulation. They present a number of opportunities for
optimization, but implemented like the C code in Figure 7, it is dif-
ficult to exploit the performance opportunities. For example, fusing
two iterations of the outer loop in diffuse may reduce memory traf-
fic, but testing this hypothesis can require significant code changes.
Figure 7 shows the same diffuse operation written in Orion. Rather
than specify loop nests directly, Orion programs are created by
composing image-wide operators. For instance, f(-1,0) + f(0,1)
adds the image f translated by −1 in x to f translated by 1 in y.
These offsets must be constant integers, which guarantees the func-
tion is a stencil.

We base our design on Halide [23], a language for the related
domain of image processing. The user guides optimization by spec-
ifying a schedule. An Orion expression can be materialized, in-
lined, or line buffered. Materialized expressions are computed once
and stored to main memory. Inlined expressions are recomputed
once for each output pixel. Line buffering is a compromise in which
computations are interleaved and the necessary intermediates are
stored in a scratchpad. Additionally, Orion can vectorize any sched-
ule using Terra’s vector instructions. Being able to easily change
the schedule is a powerful abstraction. To demonstrate this, we im-
plemented a pipeline of four simple memory-bound pointwise im-
age processing kernels (blacklevel offset, brightness, clamp, and
invert). In a traditional image processing library, these functions
would likely be written seperately so they could be composed in



an arbitrary order. In Orion, the schedule can be changed without
compromising composability. For example, by modifying only the
schedule we can choose to inline the four functions, reducing the
accesses to main memory by a factor of 4 and resulting in a 3.8x
speedup.

To implement Orion, we use operator overloading on Lua ta-
bles to build Orion expressions. These operators build an interme-
diate representation (IR) suitable for optimization. The user calls
orion.compile to compile the IR into a Terra function. We then use
Terra’s staging annotations to generate the code for the inner loop.

To test that the code generated by Terra performs well, we
implemented an area filter and a fluid simulation. We compare
each to equivalents hand-written in C. The area filter is a common
operation in image processing that averages the pixels in a 5x5
window. Area filtering is separable, so it is normally implemented
as a 1-D area filter first in Y then in X . We compare against a hand-
written C implementation with results in Figure 8. Given a schedule
that matches the C code, Orion performs similarly, running 10%
faster. Enabling vectorization in Orion yields a 2.8x speedup over
C, and then line buffering between the pass in Y and the one in
X yields a 3.4x speedup over C. Explicit vectors are not part of
standard C, and writing line-buffering code by hand is tedious and
breaks composibility, so these optimizations are not normally done
when writing code by hand.

We also implemented a simple real-time 2D fluid simulation
based on an existing C implementation [25]. We made a number
of small changes to the reference code to make it more suitable
to a stencil language. We converted the solver from Gauss-Seidel
to Gauss-Jacobi so that images are not modified in place and used
a simple zero boundary condition since our implementation does
not yet support more complicated boundaries. We also corrected a
performance bug in the reference code caused by looping over the
images in row-major order, but storing the images in column-major
order, and compare against the corrected version.

With a matching schedule, Orion performs the same as refer-
ence C. Enabling 4-wide vectorization results in a 1.9x speedup
over the matching code, making each materialized operation mem-
ory bound. Finally, line buffering pairs of the iterations of the dif-
fuse and project kernels yielded a 1.25x speedup on the vectorized
code, or a 2.3x total speedup over the reference C code.

A number of features of Terra facilitated the implementation of
Orion. High-level features of Lua made it easy to express transfor-
mations on the Orion IR. Terra’s built-in support of vector types
made it easy to vectorize the compiler by simply changing scalar
types into vectors. Backwards compatibility with C allowed us to
link to an existing library for loading images. The FFI made it pos-
sible to use Lua to implement non-performance-critical code such
as the kernel scheduler, saving development time. Furthermore, the
fluid simulation that we ported included a semi-Lagrangian advec-
tion step, which is not a stencil computation. In this case, we were
able to allow the user to pass a Terra function to do the necessary
computation, and easily integrate this code with generated Terra
code. This interoperability would have been more difficult to ac-
complish with a stand-alone compiler.

In contrast to Orion, Halide, a related image processing lan-
guage, requires three different languages to provide the same func-
tionality as Orion. It uses C++ for the front-end, ML for manipu-
lating the IR, and LLVM for code generation [23]. From our expe-
rience implementing Orion, using Lua to stage Terra code accom-
plishes the same tasks, but results in a simpler architecture.

6.3 Building reuseable components via type reflection
Terra’s type reflection makes it possible to define the behavior
and layout of types at a low-level, which can be useful in high-
performance runtimes. We show how it can be used to implement

Naïve C 1x (37.5 sec)
Naïve Orion 1x (37.7 sec)

+ Vectorization 1.9x (19.6 sec)
+ Line buffering 2.38x (15.7 sec)

Fluid Simulation:

Image Pipeline:
Vectorized 1x (22.9ms)

Inlined 3.75x (6.1ms)
Area Filter:

Vectorized N2 1x (3.9ms)
Separated 1.9x (2.1ms)

Line Buffered 3.2x (1.3ms)

Figure 8. Wall clock speedup from choosing different Orion
schedules. All results on Intel Core i7-3720QM, 1024x1024 pixel
input, floating point.

a class system with subtyping, and how it can automate data layout
with a container that can use array-of-structs or struct-of-arrays
layout.

6.3.1 Class Systems
We implement a single-inheritance class system with multiple sub-
typing of interfaces similar to Java’s. We specify classes using an
interface implemented in Lua:

J = terralib.require("lib/javalike")
Drawable = J.interface { draw = {} -> {} }
struct Square {

length : int
5 }

J.extends(Square,Shape)
J.implements(Square,Drawable)
terra Square:draw() : {} ... end

The function interface creates a new interface given a table of
method names and types. The functions J.extends and J.implements
install metamethods on the Square type that will implement the be-
havior of the class system.

Our implementation, based on vtables, uses the subset of Strous-
trup’s multiple inheritance [26] that is needed to implement single
inheritance with multiple interfaces. For each class, we define a
__finalizelayout metamethod. This metamethod is called by the
Terra typechecker right before a type is examined, allowing it to
compute the layout of the type at the latest possible time. For our
class system, this metamethod is responsible for calculating the
concrete layout of the class, creating the class’s vtable, and creating
vtables for any interface that the class implements. If the user spec-
ified a parent class using J.extends, then the class and its vtables
are organized such that the beginning of each object has the same
layout as an object of the parent, making it safe to cast a pointer to
the class to a pointer to the parent. If the user specified an interface
using J.implements then we create a vtable that implements the in-
terface, and insert a pointer to the vtable in the layout of the class.
Finally, for each method defined on class, we create a stub method
to invoke the real method through the class’s vtable:

for methodname,fn in pairs(concretemethods) do
local fntype = fn:gettype()
local params = fntype.parameters:map(symbol)
local self = params[1]

5 class.methods[methodname] =
terra([params]) : fntyp.returns

return self.__vtable.[methodname]([params])
end

end

At this point, child classes are able to access the methods and
members of a parent class, but the Terra compiler will not allow the
conversion from a child to its parent or to an interface. To enable
this behavior, we create a user-defined conversion that reflects the



subtyping relations of our class system (e.g., &Square <: &Shape).
We implement the conversion generically by defining following
__cast metamethod:

function __cast(from,to,exp)
if from:ispointer() and to:ispointer() then

if issubclass(from.type,to.type) then
--cast expression to ‘to’ type

5 return 8[to](exp)
elseif implementsinterface(from.type,to.type) then

local imd = interfacemetadata[to.type]
--extract subobject with interface vtable:
return 8&exp.[imd.name]

10 end
end
error("not a subtype")

end

Since the beginning of a child class has the same layout as its
parent, we can convert a child into a parent by simply casting
the object’s pointer to the parent’s type ([to](exp)). Converting
an object to one of its interfaces requires selecting the subobject
that holds the pointer to the interface’s vtable (&exp.[imd.name]).
The stub methods generated for the interface restore the object’s
pointer to the original object before invoking the concrete method
implementation.

We measured the overhead of function invocation in our imple-
mentation using a micro-benchmark, and found it performed within
1% of analogous C++ code. The implementation requires only 250
lines of Terra code to provide much of the functionality of Java’s
class system. Users are not limited to using any particular class sys-
tem or implementation. For instance, we have also implemented a
system that implements interfaces using fat pointers that store both
the object pointer and vtable together.

6.3.2 Data Layout
Terra’s type reflection should help programmers build reusable
components in high-performance runtimes. One common prob-
lem in high-performance computing is choosing between storing
records as an array of structs (AoS, all fields of a record stored con-
tiguously), or as a struct of arrays (SoA, individual fields stored
contiguously). We implement a solution to this problem, and con-
trast it with existing languages.

Changing the layout can substantially improve performance. We
implemented two micro-benchmarks based on mesh processing.
Each vertex of the mesh stores its position, and the vector normal
to the surface at that position. The first benchmark calculates the
vector normal as the average normal of the faces incident to the
vertex. The second simply performs a translation on the position
of every vertex. Figure 9 shows the performance using both AoS
and SoA form. Calculating vertex normals is 55% faster using AoS
form. For each triangle in the mesh, positions of its vertices are
gathered, and the normals are updated. Since this access is sparse,
there is little temporal locality in vertex access. AoS form performs
better in this case since it exploits spatial locality of the vertex
data — all elements of the vertex are accessed together. In contrast,
translating vertex positions is 43% faster using SoA form. In this
case, the vertices are accessed sequentially, but the normals are not
needed. In AoS form these normals share the same cache-lines as
the positions, and memory bandwidth is wasted loading them.

To facilitate the process of choosing a data layout in Terra,
we implemented a function that can generate either version, but
presents the same interface. A Lua function DataTable takes a Lua
table specifying the fields of the record and how to store them (AoS
or SoA), returning a new Terra type. For example, a fluid simulation
might store several fields in a cell:

FluidData = DataTable({ vx = float, vy = float,
pressure = float, density = float },"AoS")

Benchmark Array-of-Structs Struct-of-Arrays
Calc. vertex normals 3.42 GB/s 2.20 GB/s

Translate positions 9.90 GB/s 14.2 GB/s

Figure 9. Performance of mesh transformations using different
data layouts.

The FluidData type provides methods to access a row (e.g.,
fd:row(i)). Each row can access its fields (e.g., r:setx(1.f),
r:x()). The interface abstracts the layout of the data, so it can
be changed just by replacing "AoS" with "SoA".

This behavior can be emulated ahead-of-time in low-level lan-
guages, for example using X-Macros [18] in C, or template meta-
programming in C++, but unlike Terra cannot be generated dy-
namically based on runtime feedback. Dynamic languages such as
Javascript support this ad hoc creation of data types dynamically
but do not provide the same low-level of control.

7. Related Work
Much work on multi-stage programming has focused on homoge-
neous meta-programming [21, 28, 29]. MetaML [29] and MetaO-
Caml [28] add staging annotations to ML. Staged code is lexi-
cally scoped, and a type system ensures that the annotations can
only produce well-typed programs. MetaHaskell is an extension
of Haskell for heterogeneous meta-programming that supports em-
bedding new object languages while ensuring that the staging is
type-safe [17]. Unlike Terra, the object languages implemented
in MetaHaskell do not share Haskell’s lexical environment and
are currently unhygienic. Eckhardt et al. propose implicit hetero-
geneous programming in OCaml with a translation into C [10].
OCaml’s syntax precludes the use of some features of C, in par-
ticular the type language is limited to basic types and arrays. In
contrast, Terra supports type reflection and user-defined types, but
precludes static typing of the full Lua-Terra program.

Heterogeneous multi-stage languages with shared lexical scope
and different execution environments have occurred organically in
the past [10, 31]. To our knowledge, we are the first to argue for
this design choice as a way to generate portable high-performance
code, retaining interoperability through an optional FFI.

Multi-stage programming has been used to generate high-
performance programs [11, 22, 32]. Carette investigates staging
of Gaussian elimination in MetaOCaml [5], while Cohen et al. in-
vestigate applying MetaOCaml to problems in high-performance
computing like loop unrolling/tiling and pipelining [8]. This work
has focused on using staging to improve the performance of spe-
cific problems. More generally, Chafi et al. use lightweight modular
staging [24]—a type-directed staging approach that can be imple-
mented as a library—to stage a subset of the Scala language. The
staged code is used to implement DSLs in the Delite framework that
can be translated to run on GPUs [7]. Additionally, Intel’s ArBB
enables runtime generation of vector-style code using a combina-
tion of operator overloading and macros in C++ [20]. In contrast
to Terra, ArBB and Delite do not have explicit staging annotations,
instead relying on types to distinguish object-language expressions
from meta-language ones. In practice we have found that this type-
directed staging makes it difficult to know when code will execute.

The macro systems of Lisp and Scheme have also been used to
build DSLs. In particular, Racket [30] provides an interface to the
static semantics of the language using macros. Using this interface
they implement a typed variant of Racket, as well as other DSLs.
The macro system is used to translate typed Racket to standard
Racket with a few extensions to support unchecked access to fields.
Terra, by contrast, is implemented as a separate language from Lua,
which allows for different design decisions in each (e.g., automatic
memory management in Lua, manual management in Terra).



Previous work examined the combination of staging and type re-
flection for statically-typed languages. Template meta-programming
in C++ is widely used and allows generation and introspection on
types. Garcia and Lumsdaine describe a core calculus for compile-
time meta-programming based on template meta-programming in
C++ [12]. Similar to Terra, their semantics support code generation
and type reflection, but like C++ they focus only on ahead-of-
time code generation. F# allows type-providers which can specify
types and methods based on external data like a SQL schema [27].
Metaphor is a multi-stage language with support for type reflection
on a built-in class system [19]. In contrast, Terra’s type reflection
allows the creation of class-systems as libraries.

Dynamic languages have added extensions to produce low-level
code. Cython is an extension to Python language that allows the
creation of C extensions while writing in Python’s syntax [3].
Copperhead supplements Python with a vector-style language that
can run on GPUs [6]. In both cases, the low-level code depends on
the Python runtime to execute.

Other languages have been proposed as a portable target for
low-level code [15, 16]. Terra is also usable directly as a low-level
programming language, making it possible to write runtime code
in Terra.

8. Discussion and Future Work
We have presented Terra, a staged language embedded in Lua and
designed for high-performance computing. By comparing to ex-
isting multi-language systems, we have shown that the combina-
tion of a high- and low-level languages, shared lexical environ-
ment, separate execution, and type reflection make designing auto-
tuners, DSLs, and runtime components simpler, while retaining
high-performance.

We plan to extend Terra in several ways. Accelerators like GPUs
or Intel’s MIC architecture provide more performance for data-
parallel problems. We plan to extend our implementation so that
Terra can generate code that runs on these architectures. Currently
Terra does not provide a seamless way to mix Terra code compiled
ahead-of-time with dynamically compiled code, which can be prob-
lematic for DSLs with a large runtime. We plan to address this with
a module system that will allow some code to be generated ahead-
of-time, while still allowing JIT compilation of code at runtime.

Terra addresses the problem of generating high-performance
code and interoperating with existing applications. We want to gen-
eralize the way Terra is embedded and staged to make it easy to em-
bed custom DSLs in Lua in the same way that Terra is embedded.
In particular, we think that having DSLs share the same lexical en-
vironment during compilation will open up more opportunities for
interoperability between different languages. In the future, we en-
vision a programming ecosystem where the right language can be
used for a particular task without loss of performance, or significant
effort to integrate the language with existing systems.
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