Programming Models for
Concurrency and Real-time

Jan Vitek

PURDUE

Tools’09 Programming Models for Concurrency and Real-time

QOutline

O: Real-time and embedded systems

1 . Real-time Java with Ovm

: Memory management with Minuteman

: Low latency programming with Flexotasks

. Java in aerospace with the Fiji VM

uu b W N

: Conclusion

Tools’09 Programming Models for Concurrency and Real-time

Tools’09 Programming Models for Concurrency and Real-time

What is a real-time system!?

e A real-time system Is any information processing system which
has to respond to externally generated input stimuli within a
finite and specified period

> correctness depends not only on logical result but also time it is delivered

> failure to respond as bad as a wrong response

Tools’09 Programming Models for Concurrency and Real-time

What is an embedded system!?

e Computer that Is part of some other piece of equipment

> Usually dedicated software

> Often no "real’” keyboard or general purpose display
e ... we use |00+ embedded computers daily

e ... embedded hardware growth rate of 14% to reach $/8 billion

http://www.bccresearch.com/comm/G229R .html, http://www.ecpe.vt.edu/news/ar03/embedded.html

Tools’09 Programming Models for Concurrency and Real-time

Characteristics of real-time embedded systems

e Large and complex — from a few hundred lines of assembly to
20 mio lines of Ada for the Space Station Freedom

e Concurrent control of separate components— devices operate
in parallel in the real-world; model this by concurrent entities

e Facilities to interact with special purpose hardware — need to
be able to program devices In a reliable and abstract way

e Extreme reliability and safe — embedded systems control their
environment; fallure can result in loss of life, or economic loss

e Guaranteed response times — must predict with confidence
the worst case; efficiency important but predictability 1s essential

Tools’09 Programming Models for Concurrency and Real-time

A new software crisis!?

e Development time, code & certification are increasingly criteria

e For Instance In the automotive industry:

> 90% of innovation driven by electronics and software — Volkswagen
> 80% of car electronics in the future will be software-based — BMW

> 80% of our development time is spent on software— JPL

e Worst, software Is often the source of missed project deadlines.

Tools’09 Programming Models for Concurrency and Real-time

A new software crisis!?

e Typical productivity

> 5 Line of Code / person / day

> From requirements to testing: | kloc / person / year

e Typical avionics “box”

> 00 kloc = 100 person years of effort

» Costs of modern aircraft is ~$500M

Tools’09

Programming Models for Concurrency and Real-time

A new software crisis!?

e [he important metrics are thus
> Reusability

> Software quality

> Development time

e [he challenges are

> Sheer number and size of systems

> Poor programmer productivity

e [he solutions are

P
P
P

Better processes (software engineering)

Bet

Bet]

ter tools (verification, static analysis, program generation)

ler languages and programming models

Tools’09 Programming Models for Concurrency and Real-time

What programming models?

® [he programming model for most real-time systems is ‘defined’ as
a function of the hardware, operating system, and libraries.

> Consequently real-time systems are not portable across platforms

e Good news

> programming languages, such as Java and C#, are wrestling control
from the lower layers of the stack and impose well-defined semantics
(on threads, scheduling, synchronization, memory model)

Tools’09 Programming Models for Concurrency and Real-time

What programming model?

e "Real-time systems require fine grained control over resources
and thus the language of choice i1s C, C++ or assembly”

e ..entalls the software engineering drawbacks of low-level code

e Consider the following list of defects that have to be eradicated
(c.f."Diagnosing Medical Device Software Defects” Medical Devicelink, May 2009).

> Buffer overflow and underflow (does not occur in a HLL)

> Null object dereference (checked exception in a HLL)
> Uninitialized variable (does not occur in a HLL)

> |Inappropriate cast (all casts are checked in a HLL)
> Division by zero (checked exception in a HLL)

> Memory leaks (garbage collection in a HLL)

Tools’09 Programming Models for Concurrency and Real-time

What programming models?

e [here are many dimensions:

b vs. Functional
4 vs. Message passing
b vs. Higher-level abstractions

(data-centric synchronization, transactional memory)

4 vs. synchronous / logic execution time

e And multiple languages, systems:

> C, C++, Ada, SystemC, Assembler, Erlang, Esterel, Lustre, Giotto ...

Tools’09

Are object
oriented
technologies
the silver
bullet for the
real-time
software
Crisis?

Programming Models for Concurrency and Real-time

Tools’09 Programming Models for Concurrency and Real-time

Ovm

The Real-time Java
experience

Tools’09 Programming Models for Concurrency and Real-time

Java?

e Object-oriented programming helps software reuse

e Mature development environment and libraries

e Garbage collected & Memory-safe high-level language
e Portable, little implementation-specific behavior

e Concurrency built-in, support for SMBP memory model

® Popular amongst educators and programmers

Tools’09 Programming Models for Concurrency and Real-time

Java?

700

40 us

525

e Predictable?

N— wct: [9ms

350

Call sleep(10ms) and get up
20 milis.sec. variability.

Hard real-time often 175

| 15 us

accuracy. 260 Us

hmh‘“iu‘mmhm e

requires microsecond
0 _.lJ

Tools’09 Programming Models for Concurrency and Real-time

Time scale

Tools’09 Programming Models for Concurrency and Real-time

Worst case = 114ms

00
o

> Predictable!

—_
£
E
o 60
c
O
[}
®
-

N
o

N
o

100 150 200
lteration Number

> Java Collision Detector running at 20Hz.

® Rartlett's Mostly Copying Collector. Ovm. Pentium IV 1600 MHz, 512 MB
RAM, Linux 2.6.14, GCC 3.4.4

> GC pauses cause the collision detector to miss up to three
deadlines...this is not a particularly hard should support KHz periods

Tools’09 Programming Models for Concurrency and Real-time

The Real-time Specification for Java (RTYS))

e Java-like programming model.

> Shared-memory, lock-based synchronization, first class threads.

e Main real-time additions:

» Physical memory access (memory mapped I/O, devices, ...)

» Real-time threads (heap and no-heap)

» Synchronization, Resource sharing (priority inversion avoidance)
» Memory Management (region allocation + real-time GC)

> High resolution Time values and Clocks

> Asynchronous Event Handling and Timers

» Asynchronous Transfer of Control

Tools’09 Programming Models for Concurrency and Real-time

Ovm

e Started on Real-time Java in 2001,
in a DARPA funded project.
At the time, no real RTS) implementation.

e Developed the Ovm virtual machine
framework; a clean-room, open source
R1T Java virtual machine.

e Fall 2005, first flight test with Java on a plane.

Duke’s Choice
y\\Welte|

Tools’09 Programming Models for Concurrency and Real-time

Case Study: ScanEagle

Tools’09 Programming Models for Concurrency and Real-time

ScanEagle

Tools’09

ScanEagle

Mission Control

Payload Card Scan Eag le

Application Patform
Components

BN

Relative Time
NoHeapRealtimeThread
Event Channel HEESIE
Object Reference _|
Broker I. ImmortalMemory

BoundAsyncEventHandle

Serial I/O Device I. Fliaht Threats, No Fly Zones
'9 i

Real-time JAVA Control
Virtual Machine Card

Programming Models for Concurrency and Real-time

e Flight Software:

> 953 Java classes, 6616 methods.
Multiple Priority Processing:

® High (20Hz)
® Medium (5 Hz) - Computation of navigation data
® |ow (I Hz)

» Embedded Planet 300 Mhz PPC,
256MB memory, Embedded Linux

- Communicate with Flight Controls

- Performance Computation

e Java performed better than C++

Flight Data

Ground
Station

HTEEEEY

0. : -
i el
= 8 y 3 |
] 5 | > 2]) G
T —

T i-'!iiilﬁiiiiii!!iiiii -

Tools’09 Programming Models for Concurrency and Real-time

References and acknowledgements

e Team

> | Baker, I. Cunei, C. Flack, D. Holmes, C. Grothoff, K. Palacz,
F. Pizlo, M. Prochazka and also J. Thomas, K. Grothoff, E. Pla,
H.Yamauchi, P McGachey, |. Manson, A. Madan, B. Titzer

e Funding: DARPA, NSF, Lockheed Martin, Boeing
e Availability: open source, http://www.cs.purdue.edu

e Paper tralil

= A Real-time Java Virtual Machine for Avionics. RTAS, 2006

= Scoped Types and Aspects for Real-Time Systems. ECOOP, 2006

= A New Approach to Real-time Checkpointing. VEE, 2006

= Real-Time Java scoped memory: design patterns, semantics. ISORC, 2004
= Subtype tests in real time. ECOOP, 2003

= Engineering a customizable intermediate representation. IVME, 2003

Tools’09

Programming Models for Concurrency and Real-time

Minuteman

Real-time Garbage Collection

Tools’09 Programming Models for Concurrency and Real-time

Memory management and programming models

e [he choice of memory management affects productivity

e Object-oriented languages naturally hide allocation behind
abstraction barriers

> Taking care of de-allocation manually is more difficult in OO style

e Concurrent algorithms usually emphasize allocation
> because freshly allocated data Is guaranteed to be thread local

> “transactional” algorithms generate a lot of temporary objects

e ... but garbage collection Is a global, costly, operation that
introduces unpredictability

Tools’09 Programming Models for Concurrency and Real-time

Alternative |: No Allocation

e |[f there Is no allocation, GC does not run.

> This approach is used in JavaCard

Tools’09 Programming Models for Concurrency and Real-time

Alt 2: Allocation in Scoped Memory

e RTS5) provides scratch pad memory regions which can be used for
temporary allocation

> Used In deployed systems, but tricky as they can cause exceptions

s = new SizeEstimator();
s.reserve(Decrypt.class, 2);

shared = new LTMemory(s.getEstimate());
shared.enter(new Run(){ public void run(){
...dl = new Decrypt() ...

Py

Tools’09 Programming Models for Concurrency and Real-time

Alt 3: Real-time Garbage Collection

e [here are three main families of RT GC implementations

e VWork-based

> Aicas JamaicaVM
e Time-triggered, periodic
> IBM Websphere

e Time-triggered, slack

> SUN Java Real Time System

Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phases
e Mutation
p—
| [@229
\\¥‘< O \‘v
\.\J_\
_/
/_\

threadi#l heap O thread#2

Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phases

O

© 0 O
/O—>O~O\

)

e Stop-the-world

()
/]

M
w

09

O O O

threadil heap thread#2

39?

(

Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phases

® Root scanning

threadil heap thread#2

Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phases

e Marking

threadil heap thread#2

Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phaces
O O O
O (Vo @
g S O
L) e Marking
8goc
Jo 88

threadil heap thread#2

Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phases

O

® Sweeping

00
00 QO

threadil heap thread#2

Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phases

O

® Sweeping

00
00 QO

threadil heap thread#2

Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phases

O 00000
0000000

e Compaction

threadil heap thread#2

Tools’09 Programming Models for Concurrency and Real-time

Incrementalizing marking

O O—-0

Tools’09 Programming Models for Concurrency and Real-time

Incrementalizing compaction

e Forwarding pointers refer to the current version of objects

® Every access must start with a derefence

@ @—)?) original
o/

Tools’09

Time-based GC Scheduling
11 1

Programming Models for Concurrency and Real-time

_m

=

1

GC thread

RT thread

> Java thread

Tools’09

Slack-based GC Scheduling

_ =

B

B

Programming Models for Concurrency and Real-time

AN

.
GC thread

I RT thread

Java thread

I EEEEEEEEEEEE—E———————————————..,
j Worst case = 114ms]
100 | .

oo
o
T T T T
|

Latency (millis)
S (@))
o o

N
o
T T
|

; WJ“wrﬂd—\rﬂJ‘yf\J“erV“LP\/—kPNJ*kf\f’M)WJ“LNWJ“LP&J‘\P\JAMP\J E

| I I I I | I I I I | I I I I | I I I I | I I I I | I I I I |

0 50 100 150 200 250 300
lteration Number

> GC pauses cause the collision detector to miss deadlines...
and this is not a particularly hard problem should support KHz periods

25 — — —
RTGC worst case: |18 ms (median | Ims) :
20 - /]
' J N GC worst case: 120 ms (median 9ms) * |
? | | |
2.5) ! N TN) M *
215 M 3 THE
g k]
2, I | TLSERATA RIS
LE 10 i L‘r .
| W } |
5 [i
0 50 100 150 200 250 300

lteration Number

2 5 I T T T T I T T T T I T T T T I T T T T I T T T T I T T T T I

20 - Q
: RTGC worst case: I8 ms (median |Ims) |

o~ :
= 15 1
£ : RTS] worst case: |10 ms (median 7ms)
> k
O
GC) L
'ES' 10 B b N
1

WAy

| 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |

0 50 100 150 200 250 300
lteration Number

Tools’09 Programming Models for Concurrency and Real-time

References and acknowledgements

e Team

> |. Baker, I. Cunei, I. Kalibera, I. Hosking, F. Pizlo, M. Prochazka
e Funding: NSF
e Availability: open source

e Paper tralil

= Accurate Garbage Collection in Uncooperative Environments. CC:P&E, 2009

= Memory Management for Real-time Java: State of the Art. ISORC, 2008

= Garbage Collection for Safety Critical Java. JTRES, 200/

= Hierarchical Real-time Garbage Collection. LCTES, 2007/

= Scoped Types and Aspects for Real-time Java Memory management. RTS, 200/

= Accurate Garbage Collection in Uncooperative Environments with Lazy Stacks. CC, 200/

= An Empirical Evaluation of Memory Management Alternatives for Real-time Java. RTSS, 200¢
= Real-Time Java scoped memory: design patterns, semantics. ISORC, 2004

Tools’09 Programming Models for Concurrency and Real-time

Flexotask

Flexible Task Graphs

Tools’09 Programming Models for Concurrency and Real-time

Goals

e Design a new real-time programming model that allows
embedding hard real-time computations in timing-oblivious Java
applications

® Principle of Least Surprise

P Semantics of non-real-time code unchanged

> Semantics of real-time code unsurprising
e Limited set of new abstractions that compose flexibly

e No cheating

> Run efficiently in a production environment

Tools’09 Programming Models for Concurrency and Real-time

Unification of previous work

e Eventrons [pLDros] (IBM)

e Reflexes [veeo7] (Purdue/EPFL)

> Inspired by RTS| and Eventrons

e Exotasks [L.cTEs07] (IBM)

> Inspired by Giotto, and E-machine

e StreamFlex [oopsLA07] (Purdue/EPFL)

> Inspired by Reflexes, Streamlt and dataflow languages

Tools’09 Programming Models for Concurrency and Real-time
Design space

A

% Java

k wRTGC

Expressiveness

L‘ws/>>1ms

Latency

Tools’09 Programming Models for Concurrency and Real-time

Programming model
e Basic model:

> No shared state, (but local sate), no low-level data races
» Components communicate via atomic channels

> Memory management is either GCed or Region-allocated

> Time triggered scheduler

® |nspiration: Actors, Erlang, ...

® Extensions:

> Rate driven schedulers

® |nspiration: Streamlt, Giotto, ...
> Weak isolation for throughput

> Transactional memory for external interaction

Tools’09 Programming Models for Concurrency and Real-time

Flexible Task Graphs

e A FlexoTask Graph is a set of
concurrently executing, isolated,
tasks communicating through
non-blocking channels

e Semantics of legacy code Is
unaffected

e Real-time code has restricted
semantics, enforced by compile
and start-up time static checks

Task Graph

K Java Virtual Machine/

Tools’09 Programming Models for Concurrency and Real-time

Task Graph

e A Flexolask Graph is a set of
concurrently executing, isolated,
tasks communicating through
channels

e Schedulers control the execution
of tasks with user-defined policies
(eg. logical execution time, data
driven)

> atomically update task’s in ports

> Invoke task's execute()

> update the task's output ports & /

Tools’09 Programming Models for Concurrency and Real-time

Memory management

e tither garbage collected with a real-
time GC, or a region allocator for
sub-millisecond response times.

e Region tasks are split between

> Stable objects

> Transient (per invocation) objects

e Region-allocated tasks preempt task
RTGC and Java GC

\ RTGCed Task /

Tools’09 Programming Models for Concurrency and Real-time

Channels

e Stable channels

> (Can refer to any stable object
(complex structures)

> Deep copy on read (atomic)
e [ransient channels

> Can refer to Capsules (transient
objects, arrays)

> /ero-copy (linear reference)

Pinned Transient objects,

\ allocated on Java heap

Tools’09 Programming Models for Concurrency and Real-time

Communication with Java

e bvery task has an automatically
generated proxy-object

e User-defined atomic methods can
be called from Java with
transactional semantics

e Arguments are reference-
immutable pinned objects

Tools’09

Communication with Java

e Atomic Methods:

> acquire a lock on guard & pin all
reference-immutable arguments

> start transaction;

> execute method

» commit transaction

> reclaim transient memory

> unpin all arguments & release lock
on guard

e |[f during execution of the method
the Task I1s scheduleq, the
transaction is iImmediately aborted.

Programming Models for Concurrency and Real-time

Tools’09 Programming Models for Concurrency and Real-time

Static safety

e Safety checks prevent references to transient objects after they
have been deallocated and to capsules once they have been sent.

e A simple form of ownership types Is used where Stable is a
marker interface for data allocated in the stable heap and

Capsule for messages. Some polymorphism needed for arrays.

e Checking Is done statically,
no dynamic tests are need.

Tools’09 Programming Models for Concurrency and Real-time

N lmi“i ™ |

100 110 120 130 140 150

> 600K periodic invocations
> Inter-arrival time bw 57 and |44us

> 516 aborts of the atomic method

Tools’09 Programming Models for Concurrency and Real-time

References and acknowledgements

e Team

> |. Spring, |. Auerbach, D. Bacon, F. Pizlo, R. Guerraoui, |. Manson
e Funding: NSF & IBM

e Availability: released open source by IBM on sourceforge

e Paper tralil

= A Unified Restricted Thread Programming Model for Java. LCTES, 2008

= StreamFlex: High-throughput Stream Programming in Java. OOPSLA, 200/

= Reflexes:Abstractions for Highly Responsive Systems. VEE, 2007

= Scoped Types and Aspects for Real-time Java Memory management. RTS, 200/
= Scoped Types and Aspects for Real-Time Systems. ECOOP, 2006

= Preemptible Atomic Regions for Real-time Java. RTSS,2005

= Transactional lock-free data structure for Real Time Java. CSJP, 2004

Programming Models for Concurrency and Real-time

Fiji

Safety Ceritical Java

Tools’09 Programming Models for Concurrency and Real-time

SC Java Goal

e A specification for Safety Critical Java capable of being certified
under DO-178B Level A

> |Implies small, reduced complexity infrastructure (i.e. VM)

> Emphasis on defining a minimal set of capabllities
required by implementations

> Based on HIJA — High-Integrity Java Application (EU project)
> Final draft due this year (already 300+ page book)

Tools’09 Programming Models for Concurrency and Real-time

Fiji VM technology
e Proprietary ahead-of-time compiler

> Java bytecode to portable ANSI C

> high-performance, predictable execution

> Multi-core ready
e Proprietary real-time garbage collection

> easy-to-use, fully preemptible, small overhead

> zero pause times for RT tasks
e Current platforms
> OS X, Linux, RTEMS

P x86 and x64, SPARC, LEON?2/3, ERC32, and PowerPC
> 200KB footprint

Tools’09 Programming Models for Concurrency and Real-time

Execution time vs. Competitor RTJVM

12

30% faster than
leading 10

competitor

6

4

2

&
compress 0

e gaudlo

jack

no GC slow-down

| ProductX B fVM RTGC --more-opt [l fVM NO GC --more-opt

Tools’09 Programming Models for Concurrency and Real-time

RTEMS demo

o fVM runs on RTEMS 4.9.2
> Java threads run side-by-side with RTEMS C, C++, Ada threads

e Repeat every 10 ms
> Allocate Integer{ |000] array, fill with Integer instances
> Allocate 1000 more Integer instances

® Run code as an RTEMS interrupt handler

> fVM's Java runtime is robust enough to allow pure Java code to run in an
interrupt context while using all of Java's features

Tools’09
class Demo {

static Integer[] arr; static int iter, 1iWGC;

public static void main(String[] v) {
final Timer t=new Timer();
t.fireAfter(10,new Runnable(){
public void run() {
long before=HardRT.readCPUTimestamp() ;
iter++; if (GC.inProgress()) 1WGC++;
if (arr==null) {
arr=new Integer[100000];
for (int 1=0;i<arr.length;++i) arr[i]
} else
for (int i=0;i<arr.length;++1)

Programming Models for Concurrency and Real-time

static long mDWoGC, mDWGC;

new Integer(1i);

if (!arr[i].equals(new Integer(i))) throw new Error("failed "+1i);

t.fireAfter(10,this);

long diff = before-HardRT.readCPUTimestamp() ;

if (GC.inProgress()){
1if (diff>mDWGC) mDWGC = diff;

} else if (diff > mDWoGC) mDWoGC = diff;

P}
for (;;) {

String res = "Number of timer interrupts:

"+iter +

"\nNumber of timer interrupts when GC running: "+iWGC +
"\resMax interrupt exec time with GC: "+ mDWGC) ;

System.out.println(res);
Thread.sleep(1000);

PP}

Tools’09 Programming Models for Concurrency and Real-time

class Demo {

static void main (String[] v) {
final Timer t = new Timer();

t.fireAfter (10, new Runnable(){
public void run()

long before = HardRT.getCPUTimestamp();
if (GC.inProgress()) i1iterationsWGC++;
arr = new Integer[1000];
for (int 1=0;i<arr.length;++1)

arr[1] = new Integer(i);
t.fireAfter (10, this);

b}

Tools’09 Programming Models for Concurrency and Real-time

t = new Timer();
t.fireAfter (10,
new Runnable(){ void run(){
long before=getCPUTimestamp() ;
if (GC.1inProgress()) 1WGC++;
arr new Integer[1000];
for (int 1=0;i1<arr.length;++1)
arr[1] = new Integer(1i);

t.fireAfter (10, this);

b)) s

References and acknowledgements ———

e feam

> [Pizlo, L. Ziarek, I. Kalibera, D. lang, L. Zhao S]
T ttapJ

e Funding: NSF, Fiji Systems LLC 2 PJ"“ "

e Availability: to be GPLed for research

e Paper trail

= Real-time Java in Space: Potential Benefits and Open Challenges. DASIA, 2005 _’..
= A'Technology Compability Toolkit for Safety Critical Java. 2009 g

Tools’09 Programming Models for Concurrency and Real-time

Conclusion

e Realtime Specification for Java:

» http://www.rtsj.org
e Safety Critical Java:
» JSR-302 http://jcp.org
® [iji VIM:
» http://www.fiji-systems.com

e Ovm:

» http://www.cs.purdue.edu/homes/jv

