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What is a real-time system!?

e A real-time system Is any information processing system which
has to respond to externally generated input stimuli within a
finite and specified period

> correctness depends not only on logical result but also time it is delivered

> failure to respond as bad as a wrong response
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What is an embedded system!?

e Computer that Is part of some other piece of equipment

> Usually dedicated software

> Often no "real’” keyboard or general purpose display
e ... we use |00+ embedded computers daily

e ... embedded hardware growth rate of 14% to reach $/8 billion

http://www.bccresearch.com/comm/G229R .html, http://www.ecpe.vt.edu/news/ar03/embedded.html
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Characteristics of real-time embedded systems

e Large and complex — from a few hundred lines of assembly to
20 mio lines of Ada for the Space Station Freedom

e Concurrent control of separate components— devices operate
in parallel in the real-world; model this by concurrent entities

e Facilities to interact with special purpose hardware — need to
be able to program devices In a reliable and abstract way

e Extreme reliability and safe — embedded systems control their
environment; fallure can result in loss of life, or economic loss

e Guaranteed response times — must predict with confidence
the worst case; efficiency important but predictability 1s essential
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A new software crisis!?

e Development time, code & certification are increasingly criteria

e For Instance In the automotive industry:

> 90% of innovation driven by electronics and software — Volkswagen
> 80% of car electronics in the future will be software-based — BMW

> 80% of our development time is spent on software— JPL

e Worst, software Is often the source of missed project deadlines.
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A new software crisis!?

e Typical productivity

> 5 Line of Code / person / day

> From requirements to testing: | kloc / person / year

e Typical avionics “box”

> 00 kloc = 100 person years of effort

» Costs of modern aircraft is ~$500M
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A new software crisis!?

e [he important metrics are thus
> Reusability

> Software quality

> Development time

e [he challenges are

> Sheer number and size of systems

> Poor programmer productivity

e [ he solutions are

P
P
P

Better processes (software engineering)

Bet

Bet]

ter tools (verification, static analysis, program generation)

ler languages and programming models
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What programming models?

® [he programming model for most real-time systems is ‘defined’ as
a function of the hardware, operating system, and libraries.

> Consequently real-time systems are not portable across platforms

e Good news

> programming languages, such as Java and C#, are wrestling control
from the lower layers of the stack and impose well-defined semantics
(on threads, scheduling, synchronization, memory model)
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What programming model?

e "Real-time systems require fine grained control over resources
and thus the language of choice i1s C, C++ or assembly”

e ..entalls the software engineering drawbacks of low-level code

e Consider the following list of defects that have to be eradicated
(c.f."Diagnosing Medical Device Software Defects” Medical Devicelink, May 2009).

> Buffer overflow and underflow  (does not occur in a HLL)

> Null object dereference (checked exception in a HLL)
> Uninitialized variable (does not occur in a HLL)

> |Inappropriate cast (all casts are checked in a HLL)
> Division by zero (checked exception in a HLL)

> Memory leaks (garbage collection in a HLL)
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What programming models?

e [here are many dimensions:

b vs. Functional
4 vs. Message passing
b vs. Higher-level abstractions

(data-centric synchronization, transactional memory)

4 vs. synchronous / logic execution time

e And multiple languages, systems:

> C, C++, Ada, SystemC, Assembler, Erlang, Esterel, Lustre, Giotto ...
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Are object
oriented
technologies
the silver
bullet for the
real-time
software
Crisis?
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Ovm

The Real-time Java
experience
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Java?

e Object-oriented programming helps software reuse

e Mature development environment and libraries

e Garbage collected & Memory-safe high-level language
e Portable, little implementation-specific behavior

e Concurrency built-in, support for SMBP memory model

® Popular amongst educators and programmers
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Java?
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e Predictable?
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Time scale
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Worst case = 114ms
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> Java Collision Detector running at 20Hz.

® Rartlett's Mostly Copying Collector. Ovm. Pentium IV 1600 MHz, 512 MB
RAM, Linux 2.6.14, GCC 3.4.4

> GC pauses cause the collision detector to miss up to three
deadlines...this is not a particularly hard should support KHz periods
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The Real-time Specification for Java (RTYS))

e Java-like programming model.

> Shared-memory, lock-based synchronization, first class threads.

e Main real-time additions:

» Physical memory access (memory mapped I/O, devices, ...)

» Real-time threads (heap and no-heap)

» Synchronization, Resource sharing (priority inversion avoidance)
» Memory Management (region allocation + real-time GC)

> High resolution Time values and Clocks

> Asynchronous Event Handling and Timers

» Asynchronous Transfer of Control
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Ovm

e Started on Real-time Java in 2001,
in a DARPA funded project.
At the time, no real RTS) implementation.

e Developed the Ovm virtual machine
framework; a clean-room, open source
R1T Java virtual machine.

e Fall 2005, first flight test with Java on a plane.

Duke’s Choice
y\\Welte|
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Case Study: ScanEagle
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ScanEagle




Tools’09

ScanEagle

Mission Control
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e Flight Software:

> 953 Java classes, 6616 methods.
Multiple Priority Processing:

® High (20Hz)
® Medium (5 Hz) - Computation of navigation data
® |ow (I Hz)

» Embedded Planet 300 Mhz PPC,
256MB memory, Embedded Linux

- Communicate with Flight Controls

- Performance Computation

e Java performed better than C++

Flight Data

Ground
Station
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Minuteman

Real-time Garbage Collection
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Memory management and programming models

e [he choice of memory management affects productivity

e Object-oriented languages naturally hide allocation behind
abstraction barriers

> Taking care of de-allocation manually is more difficult in OO style

e Concurrent algorithms usually emphasize allocation
> because freshly allocated data Is guaranteed to be thread local

> “transactional” algorithms generate a lot of temporary objects

e ... but garbage collection Is a global, costly, operation that
introduces unpredictability
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Alternative |: No Allocation

e |[f there Is no allocation, GC does not run.

> This approach is used in JavaCard
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Alt 2: Allocation in Scoped Memory

e RTS5) provides scratch pad memory regions which can be used for
temporary allocation

> Used In deployed systems, but tricky as they can cause exceptions

s = new SizeEstimator();
s.reserve(Decrypt.class, 2);

shared = new LTMemory(s.getEstimate());
shared.enter(new Run(){ public void run(){
...dl = new Decrypt() ...

Py
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Alt 3: Real-time Garbage Collection

e [here are three main families of RT GC implementations

e VWork-based

> Aicas JamaicaVM
e Time-triggered, periodic
> IBM Websphere

e Time-triggered, slack

> SUN Java Real Time System



Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phases
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Garbage Collection

Phases

O

© 0 O
/O—>O~O\

)

e Stop-the-world

()
/]

M
w

09

O O O

threadil heap thread#2

39?

(




Tools’09 Programming Models for Concurrency and Real-time

Garbage Collection

Phases

® Root scanning

threadil heap thread#2
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Garbage Collection

Phases

e Marking

threadil heap thread#2
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Garbage Collection
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Garbage Collection

Phases

O

® Sweeping
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Garbage Collection

Phases

O

® Sweeping
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Garbage Collection

Phases

O 00000
0000000

e Compaction

threadil heap thread#2
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Incrementalizing marking

O O—-0
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Incrementalizing compaction

e Forwarding pointers refer to the current version of objects

® Every access must start with a derefence

@ @—)?) original
o/
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Time-based GC Scheduling
11 1
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_m
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GC thread

RT thread

> Java thread
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Slack-based GC Scheduling
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GC thread

I RT thread
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> GC pauses cause the collision detector to miss deadlines...
and this is not a particularly hard problem should support KHz periods
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Flexotask

Flexible Task Graphs
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Goals

e Design a new real-time programming model that allows
embedding hard real-time computations in timing-oblivious Java
applications

® Principle of Least Surprise

P Semantics of non-real-time code unchanged

> Semantics of real-time code unsurprising
e Limited set of new abstractions that compose flexibly

e No cheating

> Run efficiently in a production environment
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Unification of previous work

e Eventrons [pLDros] (IBM)

e Reflexes [veeo7] (Purdue/EPFL)

> Inspired by RTS| and Eventrons

e Exotasks [L.cTEs07] (IBM)

> Inspired by Giotto, and E-machine

e StreamFlex [oopsLA07] (Purdue/EPFL)

> Inspired by Reflexes, Streamlt and dataflow languages
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Programming model
e Basic model:

> No shared state, (but local sate), no low-level data races
» Components communicate via atomic channels

> Memory management is either GCed or Region-allocated

> Time triggered scheduler

® |nspiration: Actors, Erlang, ...

® Extensions:

> Rate driven schedulers

® |nspiration: Streamlt, Giotto, ...
> Weak isolation for throughput

> Transactional memory for external interaction



Tools’09 Programming Models for Concurrency and Real-time

Flexible Task Graphs

e A FlexoTask Graph is a set of
concurrently executing, isolated,
tasks communicating through
non-blocking channels

e Semantics of legacy code Is
unaffected

e Real-time code has restricted
semantics, enforced by compile
and start-up time static checks

Task Graph

K Java Virtual Machine/
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Task Graph

e A Flexolask Graph is a set of
concurrently executing, isolated,
tasks communicating through
channels

e Schedulers control the execution
of tasks with user-defined policies
(eg. logical execution time, data
driven)

> atomically update task’s in ports

> Invoke task's execute()

> update the task's output ports & /
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Memory management

e tither garbage collected with a real-
time GC, or a region allocator for
sub-millisecond response times.

e Region tasks are split between

> Stable objects

> Transient (per invocation) objects

e Region-allocated tasks preempt task
RTGC and Java GC

\ RTGCed Task /
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Channels

e Stable channels

> (Can refer to any stable object
(complex structures)

> Deep copy on read (atomic)
e [ransient channels

> Can refer to Capsules (transient
objects, arrays)

> /ero-copy (linear reference)

Pinned Transient objects,

\ allocated on Java heap
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Communication with Java

e bvery task has an automatically
generated proxy-object

e User-defined atomic methods can
be called from Java with
transactional semantics

e Arguments are reference-
immutable pinned objects
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Communication with Java

e Atomic Methods:

> acquire a lock on guard & pin all
reference-immutable arguments

> start transaction;

> execute method

» commit transaction

> reclaim transient memory

> unpin all arguments & release lock
on guard

e |[f during execution of the method
the Task I1s scheduleq, the
transaction is iImmediately aborted.

Programming Models for Concurrency and Real-time
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Static safety

e Safety checks prevent references to transient objects after they
have been deallocated and to capsules once they have been sent.

e A simple form of ownership types Is used where Stable is a
marker interface for data allocated in the stable heap and

Capsule for messages. Some polymorphism needed for arrays.

e Checking Is done statically,
no dynamic tests are need.
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N lmi“i ™ |

100 110 120 130 140 150

> 600K periodic invocations
> Inter-arrival time bw 57 and |44us

> 516 aborts of the atomic method
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Safety Ceritical Java
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SC Java Goal

e A specification for Safety Critical Java capable of being certified
under DO-178B Level A

> |Implies small, reduced complexity infrastructure (i.e. VM)

> Emphasis on defining a minimal set of capabllities
required by implementations

> Based on HIJA — High-Integrity Java Application (EU project)
> Final draft due this year (already 300+ page book)



Tools’09 Programming Models for Concurrency and Real-time

Fiji VM technology
e Proprietary ahead-of-time compiler

> Java bytecode to portable ANSI C

> high-performance, predictable execution

> Multi-core ready
e Proprietary real-time garbage collection

> easy-to-use, fully preemptible, small overhead

> zero pause times for RT tasks
e Current platforms
> OS X, Linux, RTEMS

P x86 and x64, SPARC, LEON?2/3, ERC32, and PowerPC
> 200KB footprint
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Execution time vs. Competitor RTJVM

12

30% faster than
leading 10

competitor
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4

2

&
compress 0

e gaudlo
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no GC slow-down

| ProductX B fVM RTGC --more-opt [l fVM NO GC --more-opt
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RTEMS demo

o fVM runs on RTEMS 4.9.2
> Java threads run side-by-side with RTEMS C, C++, Ada threads

e Repeat every 10 ms
> Allocate Integer{ |000] array, fill with Integer instances
> Allocate 1000 more Integer instances

® Run code as an RTEMS interrupt handler

> fVM's Java runtime is robust enough to allow pure Java code to run in an
interrupt context while using all of Java's features
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class Demo {

static Integer[] arr; static int iter, 1iWGC;

public static void main(String[] v) {
final Timer t=new Timer();
t.fireAfter(10,new Runnable(){
public void run() {
long before=HardRT.readCPUTimestamp( ) ;
iter++; if (GC.inProgress()) 1WGC++;
if (arr==null) {
arr=new Integer[100000];
for (int 1=0;i<arr.length;++i) arr[i]
} else
for (int i=0;i<arr.length;++1)

Programming Models for Concurrency and Real-time

static long mDWoGC, mDWGC;

new Integer(1i);

if (!arr[i].equals(new Integer(i))) throw new Error("failed "+1i);

t.fireAfter(10,this);

long diff = before-HardRT.readCPUTimestamp() ;

if (GC.inProgress()){
1if (diff>mDWGC) mDWGC = diff;

} else if (diff > mDWoGC) mDWoGC = diff;

P}
for (;;) {

String res = "Number of timer interrupts:

"+iter +

"\nNumber of timer interrupts when GC running: "+iWGC +
"\resMax interrupt exec time with GC: "+ mDWGC) ;

System.out.println(res);
Thread.sleep(1000);

PP}
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class Demo {

static void main (String[] v) {
final Timer t = new Timer();

t.fireAfter (10, new Runnable(){
public void run()

long before = HardRT.getCPUTimestamp();
if (GC.inProgress()) i1iterationsWGC++;
arr = new Integer[1000];
for (int 1=0;i<arr.length;++1)

arr[1] = new Integer(i);
t.fireAfter (10, this);

b}
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t = new Timer();
t.fireAfter (10,
new Runnable(){ void run(){
long before=getCPUTimestamp( ) ;
if (GC.1inProgress()) 1WGC++;
arr new Integer[1000];
for (int 1=0;i1<arr.length;++1)
arr[1] = new Integer(1i);

t.fireAfter (10, this);

b)) s
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Conclusion

e Realtime Specification for Java:

» http://www.rtsj.org
e Safety Critical Java:
» JSR-302 http://jcp.org
® [iji VIM:
» http://www.fiji-systems.com

e Ovm:

» http://www.cs.purdue.edu/homes/jv



